File size: 18,148 Bytes
96ea114 d6f6f3b 96ea114 ddec5a2 96ea114 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
import json
import os
import shutil
import urllib.request
import zipfile
from argparse import ArgumentParser
import gradio as gr
from main import song_cover_pipeline
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
mdxnet_models_dir = os.path.join(BASE_DIR, 'mdxnet_models')
rvc_models_dir = os.path.join(BASE_DIR, 'rvc_models')
output_dir = os.path.join(BASE_DIR, 'song_output')
def get_current_models(models_dir):
models_list = os.listdir(models_dir)
items_to_remove = ['hubert_base.pt', 'MODELS.txt', 'public_models.json', 'rmvpe.pt']
return [item for item in models_list if item not in items_to_remove]
def update_models_list():
models_l = get_current_models(rvc_models_dir)
return gr.Dropdown.update(choices=models_l)
def load_public_models():
models_table = []
for model in public_models['voice_models']:
if not model['name'] in voice_models:
model = [model['name'], model['description'], model['credit'], model['url'], ', '.join(model['tags'])]
models_table.append(model)
tags = list(public_models['tags'].keys())
return gr.DataFrame.update(value=models_table), gr.CheckboxGroup.update(choices=tags)
def extract_zip(extraction_folder, zip_name):
os.makedirs(extraction_folder)
with zipfile.ZipFile(zip_name, 'r') as zip_ref:
zip_ref.extractall(extraction_folder)
os.remove(zip_name)
index_filepath, model_filepath = None, None
for root, dirs, files in os.walk(extraction_folder):
for name in files:
if name.endswith('.index') and os.stat(os.path.join(root, name)).st_size > 1024 * 100:
index_filepath = os.path.join(root, name)
if name.endswith('.pth') and os.stat(os.path.join(root, name)).st_size > 1024 * 1024 * 40:
model_filepath = os.path.join(root, name)
if not model_filepath:
raise gr.Error(f'No .pth model file was found in the extracted zip. Please check {extraction_folder}.')
# move model and index file to extraction folder
os.rename(model_filepath, os.path.join(extraction_folder, os.path.basename(model_filepath)))
if index_filepath:
os.rename(index_filepath, os.path.join(extraction_folder, os.path.basename(index_filepath)))
# remove any unnecessary nested folders
for filepath in os.listdir(extraction_folder):
if os.path.isdir(os.path.join(extraction_folder, filepath)):
shutil.rmtree(os.path.join(extraction_folder, filepath))
def download_online_model(url, dir_name, progress=gr.Progress()):
try:
progress(0, desc=f'[~] Downloading voice model with name {dir_name}...')
zip_name = url.split('/')[-1]
extraction_folder = os.path.join(rvc_models_dir, dir_name)
if os.path.exists(extraction_folder):
raise gr.Error(f'Voice model directory {dir_name} already exists! Choose a different name for your voice model.')
if 'pixeldrain.com' in url:
url = f'https://pixeldrain.com/api/file/{zip_name}'
urllib.request.urlretrieve(url, zip_name)
progress(0.5, desc='[~] Extracting zip...')
extract_zip(extraction_folder, zip_name)
return f'[+] {dir_name} Model successfully downloaded!'
except Exception as e:
raise gr.Error(str(e))
def upload_local_model(zip_path, dir_name, progress=gr.Progress()):
try:
extraction_folder = os.path.join(rvc_models_dir, dir_name)
if os.path.exists(extraction_folder):
raise gr.Error(f'Voice model directory {dir_name} already exists! Choose a different name for your voice model.')
zip_name = zip_path.name
progress(0.5, desc='[~] Extracting zip...')
extract_zip(extraction_folder, zip_name)
return f'[+] {dir_name} Model successfully uploaded!'
except Exception as e:
raise gr.Error(str(e))
def filter_models(tags, query):
models_table = []
# no filter
if len(tags) == 0 and len(query) == 0:
for model in public_models['voice_models']:
models_table.append([model['name'], model['description'], model['credit'], model['url'], model['tags']])
# filter based on tags and query
elif len(tags) > 0 and len(query) > 0:
for model in public_models['voice_models']:
if all(tag in model['tags'] for tag in tags):
model_attributes = f"{model['name']} {model['description']} {model['credit']} {' '.join(model['tags'])}".lower()
if query.lower() in model_attributes:
models_table.append([model['name'], model['description'], model['credit'], model['url'], model['tags']])
# filter based on only tags
elif len(tags) > 0:
for model in public_models['voice_models']:
if all(tag in model['tags'] for tag in tags):
models_table.append([model['name'], model['description'], model['credit'], model['url'], model['tags']])
# filter based on only query
else:
for model in public_models['voice_models']:
model_attributes = f"{model['name']} {model['description']} {model['credit']} {' '.join(model['tags'])}".lower()
if query.lower() in model_attributes:
models_table.append([model['name'], model['description'], model['credit'], model['url'], model['tags']])
return gr.DataFrame.update(value=models_table)
def pub_dl_autofill(pub_models, event: gr.SelectData):
return gr.Text.update(value=pub_models.loc[event.index[0], 'URL']), gr.Text.update(value=pub_models.loc[event.index[0], 'Model Name'])
def swap_visibility():
return gr.update(visible=True), gr.update(visible=False), gr.update(value=''), gr.update(value=None)
def process_file_upload(file):
return file.name, gr.update(value=file.name)
def show_hop_slider(pitch_detection_algo):
if pitch_detection_algo == 'mangio-crepe':
return gr.update(visible=True)
else:
return gr.update(visible=False)
if __name__ == '__main__':
parser = ArgumentParser(description='Generate a AI cover song in the song_output/id directory.', add_help=True)
parser.add_argument("--share", action="store_true", dest="share_enabled", default=False, help="Enable sharing")
parser.add_argument("--listen", action="store_true", default=False, help="Make the WebUI reachable from your local network.")
parser.add_argument('--listen-host', type=str, help='The hostname that the server will use.')
parser.add_argument('--listen-port', type=int, help='The listening port that the server will use.')
args = parser.parse_args()
voice_models = get_current_models(rvc_models_dir)
with open(os.path.join(rvc_models_dir, 'public_models.json'), encoding='utf8') as infile:
public_models = json.load(infile)
with gr.Blocks(title='AICoverGenWebUI') as app:
gr.Label('AICoverGen WebUI created with β€οΈ', show_label=False)
gr.Markdown("AI-Cover-Gen-No-UI [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ardha27/AICoverGen-NoUI-Colab/blob/main/CoverGen_No_UI.ipynb)")
gr.Markdown("Duplicate the space for use in private")
"[![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-sm-dark.svg)](https://huggingface.co/spaces/r3gm/AICoverGen?duplicate=true)\n\n"
)
gr.Markdown("Duplicate the space for use in private")
# main tab
with gr.Tab("Generate"):
with gr.Accordion('Main Options'):
with gr.Row():
with gr.Column():
rvc_model = gr.Dropdown(voice_models, label='Voice Models', info='Models folder "AICoverGen --> rvc_models". After new models are added into this folder, click the refresh button')
ref_btn = gr.Button('Refresh Models π', variant='primary')
with gr.Column() as yt_link_col:
song_input = gr.Text(label='Song input', info='Link to a song on YouTube or full path to a local file. For file upload, click the button below. Example: https://www.youtube.com/watch?v=M-mtdN6R3bQ')
show_file_upload_button = gr.Button('Upload file instead')
with gr.Column(visible=False) as file_upload_col:
local_file = gr.File(label='Audio file')
song_input_file = gr.UploadButton('Upload π', file_types=['audio'], variant='primary')
show_yt_link_button = gr.Button('Paste YouTube link/Path to local file instead')
song_input_file.upload(process_file_upload, inputs=[song_input_file], outputs=[local_file, song_input])
with gr.Column():
pitch = gr.Slider(-3, 3, value=0, step=1, label='Pitch Change (Vocals ONLY)', info='Generally, use 1 for male to female conversions and -1 for vice-versa. (Octaves)')
pitch_all = gr.Slider(-12, 12, value=0, step=1, label='Overall Pitch Change', info='Changes pitch/key of vocals and instrumentals together. Altering this slightly reduces sound quality. (Semitones)')
show_file_upload_button.click(swap_visibility, outputs=[file_upload_col, yt_link_col, song_input, local_file])
show_yt_link_button.click(swap_visibility, outputs=[yt_link_col, file_upload_col, song_input, local_file])
with gr.Accordion('Voice conversion options', open=False):
with gr.Row():
index_rate = gr.Slider(0, 1, value=0.5, label='Index Rate', info="Controls how much of the AI voice's accent to keep in the vocals")
filter_radius = gr.Slider(0, 7, value=3, step=1, label='Filter radius', info='If >=3: apply median filtering median filtering to the harvested pitch results. Can reduce breathiness')
rms_mix_rate = gr.Slider(0, 1, value=0.25, label='RMS mix rate', info="Control how much to mimic the original vocal's loudness (0) or a fixed loudness (1)")
protect = gr.Slider(0, 0.5, value=0.33, label='Protect rate', info='Protect voiceless consonants and breath sounds. Set to 0.5 to disable.')
with gr.Column():
f0_method = gr.Dropdown(['rmvpe', 'mangio-crepe'], value='rmvpe', label='Pitch detection algorithm', info='Best option is rmvpe (clarity in vocals), then mangio-crepe (smoother vocals)')
crepe_hop_length = gr.Slider(32, 320, value=128, step=1, visible=False, label='Crepe hop length', info='Lower values leads to longer conversions and higher risk of voice cracks, but better pitch accuracy.')
f0_method.change(show_hop_slider, inputs=f0_method, outputs=crepe_hop_length)
keep_files = gr.Checkbox(label='Keep intermediate files', info='Keep all audio files generated in the song_output/id directory, e.g. Isolated Vocals/Instrumentals. Leave unchecked to save space')
with gr.Accordion('Audio mixing options', open=False):
gr.Markdown('### Volume Change (decibels)')
with gr.Row():
main_gain = gr.Slider(-20, 20, value=0, step=1, label='Main Vocals')
backup_gain = gr.Slider(-20, 20, value=0, step=1, label='Backup Vocals')
inst_gain = gr.Slider(-20, 20, value=0, step=1, label='Music')
gr.Markdown('### Reverb Control on AI Vocals')
with gr.Row():
reverb_rm_size = gr.Slider(0, 1, value=0.15, label='Room size', info='The larger the room, the longer the reverb time')
reverb_wet = gr.Slider(0, 1, value=0.2, label='Wetness level', info='Level of AI vocals with reverb')
reverb_dry = gr.Slider(0, 1, value=0.8, label='Dryness level', info='Level of AI vocals without reverb')
reverb_damping = gr.Slider(0, 1, value=0.7, label='Damping level', info='Absorption of high frequencies in the reverb')
gr.Markdown('### Audio Output Format')
output_format = gr.Dropdown(['mp3', 'wav'], value='mp3', label='Output file type', info='mp3: small file size, decent quality. wav: Large file size, best quality')
with gr.Row():
clear_btn = gr.ClearButton(value='Clear', components=[song_input, rvc_model, keep_files, local_file])
generate_btn = gr.Button("Generate", variant='primary')
ai_cover = gr.Audio(label='AI Cover', show_share_button=False)
ref_btn.click(update_models_list, None, outputs=rvc_model)
is_webui = gr.Number(value=1, visible=False)
generate_btn.click(song_cover_pipeline,
inputs=[song_input, rvc_model, pitch, keep_files, is_webui, main_gain, backup_gain,
inst_gain, index_rate, filter_radius, rms_mix_rate, f0_method, crepe_hop_length,
protect, pitch_all, reverb_rm_size, reverb_wet, reverb_dry, reverb_damping,
output_format],
outputs=[ai_cover])
clear_btn.click(lambda: [0, 0, 0, 0, 0.5, 3, 0.25, 0.33, 'rmvpe', 128, 0, 0.15, 0.2, 0.8, 0.7, 'mp3', None],
outputs=[pitch, main_gain, backup_gain, inst_gain, index_rate, filter_radius, rms_mix_rate,
protect, f0_method, crepe_hop_length, pitch_all, reverb_rm_size, reverb_wet,
reverb_dry, reverb_damping, output_format, ai_cover])
# Download tab
with gr.Tab('Download model'):
with gr.Tab('From HuggingFace/Pixeldrain URL'):
with gr.Row():
model_zip_link = gr.Text(label='Download link to model', info='Should be a zip file containing a .pth model file and an optional .index file.')
model_name = gr.Text(label='Name your model', info='Give your new model a unique name from your other voice models.')
with gr.Row():
download_btn = gr.Button('Download π', variant='primary', scale=19)
dl_output_message = gr.Text(label='Output Message', interactive=False, scale=20)
download_btn.click(download_online_model, inputs=[model_zip_link, model_name], outputs=dl_output_message)
gr.Markdown('## Input Examples')
gr.Examples(
[
['https://huggingface.co/phant0m4r/LiSA/resolve/main/LiSA.zip', 'Lisa'],
['https://pixeldrain.com/u/3tJmABXA', 'Gura'],
['https://huggingface.co/Kit-Lemonfoot/kitlemonfoot_rvc_models/resolve/main/AZKi%20(Hybrid).zip', 'Azki']
],
[model_zip_link, model_name],
[],
download_online_model,
)
with gr.Tab('From Public Index'):
gr.Markdown('## How to use')
gr.Markdown('- Click Initialize public models table')
gr.Markdown('- Filter models using tags or search bar')
gr.Markdown('- Select a row to autofill the download link and model name')
gr.Markdown('- Click Download')
with gr.Row():
pub_zip_link = gr.Text(label='Download link to model')
pub_model_name = gr.Text(label='Model name')
with gr.Row():
download_pub_btn = gr.Button('Download π', variant='primary', scale=19)
pub_dl_output_message = gr.Text(label='Output Message', interactive=False, scale=20)
filter_tags = gr.CheckboxGroup(value=[], label='Show voice models with tags', choices=[])
search_query = gr.Text(label='Search')
load_public_models_button = gr.Button(value='Initialize public models table', variant='primary')
public_models_table = gr.DataFrame(value=[], headers=['Model Name', 'Description', 'Credit', 'URL', 'Tags'], label='Available Public Models', interactive=False)
public_models_table.select(pub_dl_autofill, inputs=[public_models_table], outputs=[pub_zip_link, pub_model_name])
load_public_models_button.click(load_public_models, outputs=[public_models_table, filter_tags])
search_query.change(filter_models, inputs=[filter_tags, search_query], outputs=public_models_table)
filter_tags.change(filter_models, inputs=[filter_tags, search_query], outputs=public_models_table)
download_pub_btn.click(download_online_model, inputs=[pub_zip_link, pub_model_name], outputs=pub_dl_output_message)
# Upload tab
with gr.Tab('Upload model'):
gr.Markdown('## Upload locally trained RVC v2 model and index file')
gr.Markdown('- Find model file (weights folder) and optional index file (logs/[name] folder)')
gr.Markdown('- Compress files into zip file')
gr.Markdown('- Upload zip file and give unique name for voice')
gr.Markdown('- Click Upload model')
with gr.Row():
with gr.Column():
zip_file = gr.File(label='Zip file')
local_model_name = gr.Text(label='Model name')
with gr.Row():
model_upload_button = gr.Button('Upload model', variant='primary', scale=19)
local_upload_output_message = gr.Text(label='Output Message', interactive=False, scale=20)
model_upload_button.click(upload_local_model, inputs=[zip_file, local_model_name], outputs=local_upload_output_message)
app.launch(
share=args.share_enabled,
enable_queue=True,
server_name=None if not args.listen else (args.listen_host or '0.0.0.0'),
server_port=args.listen_port,
)
|