File size: 13,734 Bytes
1cb796d
4b6c7ff
1cb796d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50600ce
 
1cb796d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50600ce
1cb796d
 
50600ce
1cb796d
 
 
 
 
 
50600ce
 
1cb796d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50600ce
 
1cb796d
 
 
 
 
 
50600ce
1cb796d
 
 
50600ce
1cb796d
 
 
50600ce
1cb796d
 
 
50600ce
 
 
 
 
1cb796d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50600ce
1cb796d
50600ce
1cb796d
50600ce
 
 
 
1cb796d
50600ce
 
 
1cb796d
50600ce
1cb796d
 
 
 
 
 
db06f79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edf08a9
db06f79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cb796d
 
 
 
 
50600ce
2f97a56
deb1df1
1cb796d
 
db06f79
1cb796d
 
 
 
 
db06f79
1cb796d
 
 
 
 
50600ce
 
 
 
 
 
 
 
 
1cb796d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50600ce
 
 
 
 
 
5d8ae2c
50600ce
 
 
 
 
 
 
 
 
 
 
 
51b8d76
50600ce
db06f79
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import os
import glob
import json
import traceback
import logging
import gradio as gr
import numpy as np
import librosa
import torch
import asyncio
import edge_tts
import yt_dlp
import ffmpeg
import subprocess
import sys
import io
import wave
from datetime import datetime
from fairseq import checkpoint_utils
from infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono
from vc_infer_pipeline import VC
from config import Config
config = Config()
logging.getLogger("numba").setLevel(logging.WARNING)
limitation = os.getenv("SYSTEM") == "spaces"  # limit audio length in huggingface spaces

def create_vc_fn(tgt_sr, net_g, vc, if_f0, file_index):
    def vc_fn(
        input_audio,
        upload_audio,
        upload_mode,
        f0_up_key,
        f0_method,
        index_rate,
        tts_mode,
        tts_text,
        tts_voice
    ):
        try:
            if tts_mode:
                if len(tts_text) > 100 and limitation:
                    return "Text is too long", None
                if tts_text is None or tts_voice is None:
                    return "You need to enter text and select a voice", None
                asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save("tts.mp3"))
                audio, sr = librosa.load("tts.mp3", sr=16000, mono=True)
            else:
                if upload_mode:
                    if input_audio is None:
                        return "You need to upload an audio", None
                    sampling_rate, audio = upload_audio
                    duration = audio.shape[0] / sampling_rate
                    audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
                    if len(audio.shape) > 1:
                        audio = librosa.to_mono(audio.transpose(1, 0))
                    if sampling_rate != 16000:
                        audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
                else:
                    audio, sr = librosa.load(input_audio, sr=16000, mono=True)
            times = [0, 0, 0]
            f0_up_key = int(f0_up_key)
            audio_opt = vc.pipeline(
                hubert_model,
                net_g,
                0,
                audio,
                times,
                f0_up_key,
                f0_method,
                file_index,
                index_rate,
                if_f0,
                f0_file=None,
            )
            print(
                f"[{datetime.now().strftime('%Y-%m-%d %H:%M')}]: npy: {times[0]}, f0: {times[1]}s, infer: {times[2]}s"
            )
            return "Success", (tgt_sr, audio_opt)
        except:
            info = traceback.format_exc()
            print(info)
            return info, (None, None)
    return vc_fn

def cut_vocal_and_inst(yt_url):
    if yt_url != "":
        if not os.path.exists("youtube_audio"):
            os.mkdir("youtube_audio")
        ydl_opts = {
            'format': 'bestaudio/best',
            'postprocessors': [{
                'key': 'FFmpegExtractAudio',
                'preferredcodec': 'wav',
            }],
            "outtmpl": 'youtube_audio/audio',
        }
        with yt_dlp.YoutubeDL(ydl_opts) as ydl:
            ydl.download([yt_url])
        yt_audio_path = "youtube_audio/audio.wav"
        command = f"demucs --two-stems=vocals {yt_audio_path}"
        result = subprocess.run(command.split(), stdout=subprocess.PIPE)
        print(result.stdout.decode())
        return ("separated/htdemucs/audio/vocals.wav", "separated/htdemucs/audio/no_vocals.wav", yt_audio_path, "separated/htdemucs/audio/vocals.wav")

def combine_vocal_and_inst(audio_data, audio_volume):
    print(audio_data)
    if not os.path.exists("result"):
        os.mkdir("result")
    vocal_path = "result/output.wav"
    inst_path = "separated/htdemucs/audio/no_vocals.wav"
    output_path = "result/combine.mp3"
    with wave.open(vocal_path, "w") as wave_file:
        wave_file.setnchannels(1) 
        wave_file.setsampwidth(2)
        wave_file.setframerate(audio_data[0])
        wave_file.writeframes(audio_data[1].tobytes())
    command =  f'ffmpeg -y -i {inst_path} -i {vocal_path} -filter_complex [1:a]volume={audio_volume}dB[v];[0:a][v]amix=inputs=2:duration=longest -b:a 320k -c:a libmp3lame {output_path}'
    result = subprocess.run(command.split(), stdout=subprocess.PIPE)
    return output_path

def load_hubert():
    global hubert_model
    models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
        ["hubert_base.pt"],
        suffix="",
    )
    hubert_model = models[0]
    hubert_model = hubert_model.to(config.device)
    if config.is_half:
        hubert_model = hubert_model.half()
    else:
        hubert_model = hubert_model.float()
    hubert_model.eval()

def change_to_tts_mode(tts_mode, upload_mode):
    if tts_mode:
        return gr.Textbox.update(visible=False), gr.Audio.update(visible=False), gr.Checkbox.update(visible=False), gr.Textbox.update(visible=True), gr.Dropdown.update(visible=True)
    else:
        if upload_mode:
            return gr.Textbox.update(visible=False), gr.Audio.update(visible=True), gr.Checkbox.update(visible=True), gr.Textbox.update(visible=False), gr.Dropdown.update(visible=False)
        else:
            return gr.Textbox.update(visible=True), gr.Audio.update(visible=False), gr.Checkbox.update(visible=True), gr.Textbox.update(visible=False), gr.Dropdown.update(visible=False)

def change_to_upload_mode(upload_mode):
    if upload_mode:
        return gr.Textbox().update(visible=False), gr.Audio().update(visible=True)
    else:
        return gr.Textbox().update(visible=True), gr.Audio().update(visible=False)

if __name__ == '__main__':
    load_hubert()
    models = []
    tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
    voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list]
    if config.json:
        with open("weights/model_info.json", "r", encoding="utf-8") as f:
            models_info = json.load(f)
        for name, info in models_info.items():
            if not info['enable']:
                continue
            title = info['title']
            author = info.get("author", None)
            cover = f"weights/{name}/{info['cover']}"
            index = f"weights/{name}/{info['feature_retrieval_library']}"
            cpt = torch.load(f"weights/{name}/{name}.pth", map_location="cpu")
            tgt_sr = cpt["config"][-1]
            cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]  # n_spk
            if_f0 = cpt.get("f0", 1)
            if if_f0 == 1:
                net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
            else:
                net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
            del net_g.enc_q
            print(net_g.load_state_dict(cpt["weight"], strict=False))
            net_g.eval().to(config.device)
            if config.is_half:
                net_g = net_g.half()
            else:
                net_g = net_g.float()
            vc = VC(tgt_sr, config)
            models.append((name, title, author, cover, create_vc_fn(tgt_sr, net_g, vc, if_f0, index)))
    else:
        folder_path = "weights"
        for name in os.listdir(folder_path):
            print("check folder: " + name)
            if name.startswith("."): break
            cover_path = glob.glob(f"{folder_path}/{name}/*.png") + glob.glob(f"{folder_path}/{name}/*.jpg")
            index_path = glob.glob(f"{folder_path}/{name}/*.index")
            checkpoint_path = glob.glob(f"{folder_path}/{name}/*.pth")
            title = name
            author = ""
            if cover_path:
                cover = cover_path[0]
            else:
                cover = ""
            index = index_path[0]
            cpt = torch.load(checkpoint_path[0], map_location="cpu")
            tgt_sr = cpt["config"][-1]
            cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]  # n_spk
            if_f0 = cpt.get("f0", 1)
            if if_f0 == 1:
                net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
            else:
                net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
            del net_g.enc_q
            print(net_g.load_state_dict(cpt["weight"], strict=False))  # 不加这一行清不干净, 真奇葩
            net_g.eval().to(config.device)
            if config.is_half:
                net_g = net_g.half()
            else:
                net_g = net_g.float()
            vc = VC(tgt_sr, config)
            models.append((name, title, author, cover, create_vc_fn(tgt_sr, net_g, vc, if_f0, index)))
    with gr.Blocks() as app:
        gr.Markdown(
            "# <center> RVC Models (Latest Update)\n"
            "## <center> The input audio should be clean and pure voice without background music.\n"
            "### <center> More feature will be added soon... \n"
            "#### <center> Please regenerate your model to latest RVC to fully applied this new rvc.\n"
            "[![image](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/110kiMZTdP6Ri1lY9-NbQf17GVPPhHyeT?usp=sharing)\n\n"
            "[![Original Repo](https://badgen.net/badge/icon/github?icon=github&label=Original%20Repo)](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI)"
        )
        with gr.Tabs():
            for (name, title, author, cover, vc_fn) in models:
                with gr.TabItem(name):
                    with gr.Row():
                        gr.Markdown(
                            '<div align="center">'
                            f'<div>{title}</div>\n'+
                            (f'<div>Model author: {author}</div>' if author else "")+
                            (f'<img style="width:auto;height:300px;" src="file/{cover}">' if cover else "")+
                            '</div>'
                        )
                    with gr.Row():
                        with gr.Column():
                            vc_youtube = gr.Textbox(label="Youtube URL")
                            vc_convert = gr.Button("Convert", variant="primary")
                            vc_vocal_preview = gr.Audio(label="Vocal Preview")
                            vc_inst_preview = gr.Audio(label="Instrumental Preview")
                            vc_audio_preview = gr.Audio(label="Audio Preview")
                        with gr.Column():
                            vc_input = gr.Textbox(label="Input audio path")
                            vc_upload = gr.Audio(label="Upload audio file", visible=False, interactive=True)
                            upload_mode = gr.Checkbox(label="Upload mode", value=False)
                            vc_transpose = gr.Number(label="Transpose", value=0)
                            vc_f0method = gr.Radio(
                                label="Pitch extraction algorithm, PM is fast but Harvest is better for low frequencies",
                                choices=["pm", "harvest"],
                                value="pm",
                                interactive=True,
                            )
                            vc_index_ratio = gr.Slider(
                                minimum=0,
                                maximum=1,
                                label="Retrieval feature ratio",
                                value=0.6,
                                interactive=True,
                            )
                            tts_mode = gr.Checkbox(label="tts (use edge-tts as input)", value=False)
                            tts_text = gr.Textbox(visible=False,label="TTS text (100 words limitation)" if limitation else "TTS text")
                            tts_voice = gr.Dropdown(label="Edge-tts speaker", choices=voices, visible=False, allow_custom_value=False, value="en-US-AnaNeural-Female")
                            vc_output1 = gr.Textbox(label="Output Message")
                            vc_output2 = gr.Audio(label="Output Audio")
                            vc_submit = gr.Button("Generate", variant="primary")
                        with gr.Column():
                            vc_volume = gr.Slider(
                                minimum=0,
                                maximum=10,
                                label="Vocal volume",
                                value=4,
                                interactive=True,
                                step=1
                            )
                            vc_outputCombine = gr.Audio(label="Output Combined Audio")
                            vc_combine =  gr.Button("Combine",variant="primary")
                vc_submit.click(vc_fn, [vc_input, vc_upload, upload_mode, vc_transpose, vc_f0method, vc_index_ratio, tts_mode, tts_text, tts_voice], [vc_output1, vc_output2])
                vc_convert.click(cut_vocal_and_inst, vc_youtube, [vc_vocal_preview, vc_inst_preview, vc_audio_preview, vc_input])
                vc_combine.click(combine_vocal_and_inst, [vc_output2, vc_volume], vc_outputCombine)
                tts_mode.change(change_to_tts_mode, [tts_mode, upload_mode], [vc_input, vc_upload, upload_mode, tts_text, tts_voice])
                upload_mode.change(change_to_upload_mode, [upload_mode], [vc_input, vc_upload])
        gr.Markdown('# <center>Changelog 2023.05.15')
        gr.Markdown('- Added support for direct upload to gradio')
        gr.Markdown('- Added ayato-jp, eula-jp, and keqing-jp')
        gr.Markdown('- Minor fix and adjustment')
        app.queue(concurrency_count=1, max_size=20, api_open=config.api).launch(share=config.colab)