ArkanDash commited on
Commit
450be50
·
1 Parent(s): 5479aca

feat: update infer

Browse files
app.py CHANGED
@@ -41,7 +41,7 @@ else:
41
  f0method_mode = ["pm", "harvest", "crepe"]
42
  f0method_info = "PM is fast, Harvest is good but extremely slow, and Crepe effect is good but requires GPU (Default: PM)"
43
 
44
- def create_vc_fn(model_title, tgt_sr, net_g, vc, if_f0, version, file_index):
45
  def vc_fn(
46
  vc_audio_mode,
47
  vc_input,
@@ -57,7 +57,7 @@ def create_vc_fn(model_title, tgt_sr, net_g, vc, if_f0, version, file_index):
57
  protect,
58
  ):
59
  try:
60
- print(f"Generating {model_title} voice...")
61
  if vc_audio_mode == "Input path" or "Youtube" and vc_input != "":
62
  audio, sr = librosa.load(vc_input, sr=16000, mono=True)
63
  elif vc_audio_mode == "Upload audio":
@@ -104,7 +104,7 @@ def create_vc_fn(model_title, tgt_sr, net_g, vc, if_f0, version, file_index):
104
  f0_file=None,
105
  )
106
  info = f"[{datetime.now().strftime('%Y-%m-%d %H:%M')}]: npy: {times[0]}, f0: {times[1]}s, infer: {times[2]}s"
107
- print(f"{model_title} | {info}")
108
  return info, (tgt_sr, audio_opt)
109
  except:
110
  info = traceback.format_exc()
@@ -159,7 +159,7 @@ def load_model():
159
  net_g = net_g.float()
160
  vc = VC(tgt_sr, config)
161
  print(f"Model loaded: {character_name} / {info['feature_retrieval_library']} | ({model_version})")
162
- models.append((character_name, model_title, model_author, model_cover, model_version, create_vc_fn(model_title, tgt_sr, net_g, vc, if_f0, version, model_index)))
163
  categories.append([category_title, category_folder, description, models])
164
  return categories
165
 
 
41
  f0method_mode = ["pm", "harvest", "crepe"]
42
  f0method_info = "PM is fast, Harvest is good but extremely slow, and Crepe effect is good but requires GPU (Default: PM)"
43
 
44
+ def create_vc_fn(model_name, tgt_sr, net_g, vc, if_f0, version, file_index):
45
  def vc_fn(
46
  vc_audio_mode,
47
  vc_input,
 
57
  protect,
58
  ):
59
  try:
60
+ print(f"Converting using {model_name}...")
61
  if vc_audio_mode == "Input path" or "Youtube" and vc_input != "":
62
  audio, sr = librosa.load(vc_input, sr=16000, mono=True)
63
  elif vc_audio_mode == "Upload audio":
 
104
  f0_file=None,
105
  )
106
  info = f"[{datetime.now().strftime('%Y-%m-%d %H:%M')}]: npy: {times[0]}, f0: {times[1]}s, infer: {times[2]}s"
107
+ print(f"{model_name} | {info}")
108
  return info, (tgt_sr, audio_opt)
109
  except:
110
  info = traceback.format_exc()
 
159
  net_g = net_g.float()
160
  vc = VC(tgt_sr, config)
161
  print(f"Model loaded: {character_name} / {info['feature_retrieval_library']} | ({model_version})")
162
+ models.append((character_name, model_title, model_author, model_cover, model_version, create_vc_fn(model_name, tgt_sr, net_g, vc, if_f0, version, model_index)))
163
  categories.append([category_title, category_folder, description, models])
164
  return categories
165
 
lib/infer_pack/models.py CHANGED
@@ -631,12 +631,17 @@ class SynthesizerTrnMs256NSFsid(nn.Module):
631
  o = self.dec(z_slice, pitchf, g=g)
632
  return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
633
 
634
- def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
635
  g = self.emb_g(sid).unsqueeze(-1)
636
  m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
637
  z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
 
 
 
 
 
638
  z = self.flow(z_p, x_mask, g=g, reverse=True)
639
- o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
640
  return o, x_mask, (z, z_p, m_p, logs_p)
641
 
642
 
@@ -742,12 +747,17 @@ class SynthesizerTrnMs768NSFsid(nn.Module):
742
  o = self.dec(z_slice, pitchf, g=g)
743
  return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
744
 
745
- def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
746
  g = self.emb_g(sid).unsqueeze(-1)
747
  m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
748
  z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
 
 
 
 
 
749
  z = self.flow(z_p, x_mask, g=g, reverse=True)
750
- o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
751
  return o, x_mask, (z, z_p, m_p, logs_p)
752
 
753
 
@@ -844,12 +854,16 @@ class SynthesizerTrnMs256NSFsid_nono(nn.Module):
844
  o = self.dec(z_slice, g=g)
845
  return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
846
 
847
- def infer(self, phone, phone_lengths, sid, max_len=None):
848
  g = self.emb_g(sid).unsqueeze(-1)
849
  m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
850
  z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
 
 
 
 
851
  z = self.flow(z_p, x_mask, g=g, reverse=True)
852
- o = self.dec((z * x_mask)[:, :, :max_len], g=g)
853
  return o, x_mask, (z, z_p, m_p, logs_p)
854
 
855
 
@@ -946,12 +960,16 @@ class SynthesizerTrnMs768NSFsid_nono(nn.Module):
946
  o = self.dec(z_slice, g=g)
947
  return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
948
 
949
- def infer(self, phone, phone_lengths, sid, max_len=None):
950
  g = self.emb_g(sid).unsqueeze(-1)
951
  m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
952
  z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
 
 
 
 
953
  z = self.flow(z_p, x_mask, g=g, reverse=True)
954
- o = self.dec((z * x_mask)[:, :, :max_len], g=g)
955
  return o, x_mask, (z, z_p, m_p, logs_p)
956
 
957
 
 
631
  o = self.dec(z_slice, pitchf, g=g)
632
  return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
633
 
634
+ def infer(self, phone, phone_lengths, pitch, nsff0, sid, rate=None):
635
  g = self.emb_g(sid).unsqueeze(-1)
636
  m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
637
  z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
638
+ if rate:
639
+ head = int(z_p.shape[2] * rate)
640
+ z_p = z_p[:, :, -head:]
641
+ x_mask = x_mask[:, :, -head:]
642
+ nsff0 = nsff0[:, -head:]
643
  z = self.flow(z_p, x_mask, g=g, reverse=True)
644
+ o = self.dec(z * x_mask, nsff0, g=g)
645
  return o, x_mask, (z, z_p, m_p, logs_p)
646
 
647
 
 
747
  o = self.dec(z_slice, pitchf, g=g)
748
  return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
749
 
750
+ def infer(self, phone, phone_lengths, pitch, nsff0, sid, rate=None):
751
  g = self.emb_g(sid).unsqueeze(-1)
752
  m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
753
  z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
754
+ if rate:
755
+ head = int(z_p.shape[2] * rate)
756
+ z_p = z_p[:, :, -head:]
757
+ x_mask = x_mask[:, :, -head:]
758
+ nsff0 = nsff0[:, -head:]
759
  z = self.flow(z_p, x_mask, g=g, reverse=True)
760
+ o = self.dec(z * x_mask, nsff0, g=g)
761
  return o, x_mask, (z, z_p, m_p, logs_p)
762
 
763
 
 
854
  o = self.dec(z_slice, g=g)
855
  return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
856
 
857
+ def infer(self, phone, phone_lengths, sid, rate=None):
858
  g = self.emb_g(sid).unsqueeze(-1)
859
  m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
860
  z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
861
+ if rate:
862
+ head = int(z_p.shape[2] * rate)
863
+ z_p = z_p[:, :, -head:]
864
+ x_mask = x_mask[:, :, -head:]
865
  z = self.flow(z_p, x_mask, g=g, reverse=True)
866
+ o = self.dec(z * x_mask, g=g)
867
  return o, x_mask, (z, z_p, m_p, logs_p)
868
 
869
 
 
960
  o = self.dec(z_slice, g=g)
961
  return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
962
 
963
+ def infer(self, phone, phone_lengths, sid, rate=None):
964
  g = self.emb_g(sid).unsqueeze(-1)
965
  m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
966
  z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
967
+ if rate:
968
+ head = int(z_p.shape[2] * rate)
969
+ z_p = z_p[:, :, -head:]
970
+ x_mask = x_mask[:, :, -head:]
971
  z = self.flow(z_p, x_mask, g=g, reverse=True)
972
+ o = self.dec(z * x_mask, g=g)
973
  return o, x_mask, (z, z_p, m_p, logs_p)
974
 
975
 
lib/infer_pack/models_dml.py ADDED
@@ -0,0 +1,1124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math, pdb, os
2
+ from time import time as ttime
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+ from lib.infer_pack import modules
7
+ from lib.infer_pack import attentions
8
+ from lib.infer_pack import commons
9
+ from lib.infer_pack.commons import init_weights, get_padding
10
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
11
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
12
+ from lib.infer_pack.commons import init_weights
13
+ import numpy as np
14
+ from lib.infer_pack import commons
15
+
16
+
17
+ class TextEncoder256(nn.Module):
18
+ def __init__(
19
+ self,
20
+ out_channels,
21
+ hidden_channels,
22
+ filter_channels,
23
+ n_heads,
24
+ n_layers,
25
+ kernel_size,
26
+ p_dropout,
27
+ f0=True,
28
+ ):
29
+ super().__init__()
30
+ self.out_channels = out_channels
31
+ self.hidden_channels = hidden_channels
32
+ self.filter_channels = filter_channels
33
+ self.n_heads = n_heads
34
+ self.n_layers = n_layers
35
+ self.kernel_size = kernel_size
36
+ self.p_dropout = p_dropout
37
+ self.emb_phone = nn.Linear(256, hidden_channels)
38
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
39
+ if f0 == True:
40
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
41
+ self.encoder = attentions.Encoder(
42
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
43
+ )
44
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
45
+
46
+ def forward(self, phone, pitch, lengths):
47
+ if pitch == None:
48
+ x = self.emb_phone(phone)
49
+ else:
50
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
51
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
52
+ x = self.lrelu(x)
53
+ x = torch.transpose(x, 1, -1) # [b, h, t]
54
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
55
+ x.dtype
56
+ )
57
+ x = self.encoder(x * x_mask, x_mask)
58
+ stats = self.proj(x) * x_mask
59
+
60
+ m, logs = torch.split(stats, self.out_channels, dim=1)
61
+ return m, logs, x_mask
62
+
63
+
64
+ class TextEncoder768(nn.Module):
65
+ def __init__(
66
+ self,
67
+ out_channels,
68
+ hidden_channels,
69
+ filter_channels,
70
+ n_heads,
71
+ n_layers,
72
+ kernel_size,
73
+ p_dropout,
74
+ f0=True,
75
+ ):
76
+ super().__init__()
77
+ self.out_channels = out_channels
78
+ self.hidden_channels = hidden_channels
79
+ self.filter_channels = filter_channels
80
+ self.n_heads = n_heads
81
+ self.n_layers = n_layers
82
+ self.kernel_size = kernel_size
83
+ self.p_dropout = p_dropout
84
+ self.emb_phone = nn.Linear(768, hidden_channels)
85
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
86
+ if f0 == True:
87
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
88
+ self.encoder = attentions.Encoder(
89
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
90
+ )
91
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
92
+
93
+ def forward(self, phone, pitch, lengths):
94
+ if pitch == None:
95
+ x = self.emb_phone(phone)
96
+ else:
97
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
98
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
99
+ x = self.lrelu(x)
100
+ x = torch.transpose(x, 1, -1) # [b, h, t]
101
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
102
+ x.dtype
103
+ )
104
+ x = self.encoder(x * x_mask, x_mask)
105
+ stats = self.proj(x) * x_mask
106
+
107
+ m, logs = torch.split(stats, self.out_channels, dim=1)
108
+ return m, logs, x_mask
109
+
110
+
111
+ class ResidualCouplingBlock(nn.Module):
112
+ def __init__(
113
+ self,
114
+ channels,
115
+ hidden_channels,
116
+ kernel_size,
117
+ dilation_rate,
118
+ n_layers,
119
+ n_flows=4,
120
+ gin_channels=0,
121
+ ):
122
+ super().__init__()
123
+ self.channels = channels
124
+ self.hidden_channels = hidden_channels
125
+ self.kernel_size = kernel_size
126
+ self.dilation_rate = dilation_rate
127
+ self.n_layers = n_layers
128
+ self.n_flows = n_flows
129
+ self.gin_channels = gin_channels
130
+
131
+ self.flows = nn.ModuleList()
132
+ for i in range(n_flows):
133
+ self.flows.append(
134
+ modules.ResidualCouplingLayer(
135
+ channels,
136
+ hidden_channels,
137
+ kernel_size,
138
+ dilation_rate,
139
+ n_layers,
140
+ gin_channels=gin_channels,
141
+ mean_only=True,
142
+ )
143
+ )
144
+ self.flows.append(modules.Flip())
145
+
146
+ def forward(self, x, x_mask, g=None, reverse=False):
147
+ if not reverse:
148
+ for flow in self.flows:
149
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
150
+ else:
151
+ for flow in reversed(self.flows):
152
+ x = flow(x, x_mask, g=g, reverse=reverse)
153
+ return x
154
+
155
+ def remove_weight_norm(self):
156
+ for i in range(self.n_flows):
157
+ self.flows[i * 2].remove_weight_norm()
158
+
159
+
160
+ class PosteriorEncoder(nn.Module):
161
+ def __init__(
162
+ self,
163
+ in_channels,
164
+ out_channels,
165
+ hidden_channels,
166
+ kernel_size,
167
+ dilation_rate,
168
+ n_layers,
169
+ gin_channels=0,
170
+ ):
171
+ super().__init__()
172
+ self.in_channels = in_channels
173
+ self.out_channels = out_channels
174
+ self.hidden_channels = hidden_channels
175
+ self.kernel_size = kernel_size
176
+ self.dilation_rate = dilation_rate
177
+ self.n_layers = n_layers
178
+ self.gin_channels = gin_channels
179
+
180
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
181
+ self.enc = modules.WN(
182
+ hidden_channels,
183
+ kernel_size,
184
+ dilation_rate,
185
+ n_layers,
186
+ gin_channels=gin_channels,
187
+ )
188
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
189
+
190
+ def forward(self, x, x_lengths, g=None):
191
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
192
+ x.dtype
193
+ )
194
+ x = self.pre(x) * x_mask
195
+ x = self.enc(x, x_mask, g=g)
196
+ stats = self.proj(x) * x_mask
197
+ m, logs = torch.split(stats, self.out_channels, dim=1)
198
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
199
+ return z, m, logs, x_mask
200
+
201
+ def remove_weight_norm(self):
202
+ self.enc.remove_weight_norm()
203
+
204
+
205
+ class Generator(torch.nn.Module):
206
+ def __init__(
207
+ self,
208
+ initial_channel,
209
+ resblock,
210
+ resblock_kernel_sizes,
211
+ resblock_dilation_sizes,
212
+ upsample_rates,
213
+ upsample_initial_channel,
214
+ upsample_kernel_sizes,
215
+ gin_channels=0,
216
+ ):
217
+ super(Generator, self).__init__()
218
+ self.num_kernels = len(resblock_kernel_sizes)
219
+ self.num_upsamples = len(upsample_rates)
220
+ self.conv_pre = Conv1d(
221
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
222
+ )
223
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
224
+
225
+ self.ups = nn.ModuleList()
226
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
227
+ self.ups.append(
228
+ weight_norm(
229
+ ConvTranspose1d(
230
+ upsample_initial_channel // (2**i),
231
+ upsample_initial_channel // (2 ** (i + 1)),
232
+ k,
233
+ u,
234
+ padding=(k - u) // 2,
235
+ )
236
+ )
237
+ )
238
+
239
+ self.resblocks = nn.ModuleList()
240
+ for i in range(len(self.ups)):
241
+ ch = upsample_initial_channel // (2 ** (i + 1))
242
+ for j, (k, d) in enumerate(
243
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
244
+ ):
245
+ self.resblocks.append(resblock(ch, k, d))
246
+
247
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
248
+ self.ups.apply(init_weights)
249
+
250
+ if gin_channels != 0:
251
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
252
+
253
+ def forward(self, x, g=None):
254
+ x = self.conv_pre(x)
255
+ if g is not None:
256
+ x = x + self.cond(g)
257
+
258
+ for i in range(self.num_upsamples):
259
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
260
+ x = self.ups[i](x)
261
+ xs = None
262
+ for j in range(self.num_kernels):
263
+ if xs is None:
264
+ xs = self.resblocks[i * self.num_kernels + j](x)
265
+ else:
266
+ xs += self.resblocks[i * self.num_kernels + j](x)
267
+ x = xs / self.num_kernels
268
+ x = F.leaky_relu(x)
269
+ x = self.conv_post(x)
270
+ x = torch.tanh(x)
271
+
272
+ return x
273
+
274
+ def remove_weight_norm(self):
275
+ for l in self.ups:
276
+ remove_weight_norm(l)
277
+ for l in self.resblocks:
278
+ l.remove_weight_norm()
279
+
280
+
281
+ class SineGen(torch.nn.Module):
282
+ """Definition of sine generator
283
+ SineGen(samp_rate, harmonic_num = 0,
284
+ sine_amp = 0.1, noise_std = 0.003,
285
+ voiced_threshold = 0,
286
+ flag_for_pulse=False)
287
+ samp_rate: sampling rate in Hz
288
+ harmonic_num: number of harmonic overtones (default 0)
289
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
290
+ noise_std: std of Gaussian noise (default 0.003)
291
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
292
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
293
+ Note: when flag_for_pulse is True, the first time step of a voiced
294
+ segment is always sin(np.pi) or cos(0)
295
+ """
296
+
297
+ def __init__(
298
+ self,
299
+ samp_rate,
300
+ harmonic_num=0,
301
+ sine_amp=0.1,
302
+ noise_std=0.003,
303
+ voiced_threshold=0,
304
+ flag_for_pulse=False,
305
+ ):
306
+ super(SineGen, self).__init__()
307
+ self.sine_amp = sine_amp
308
+ self.noise_std = noise_std
309
+ self.harmonic_num = harmonic_num
310
+ self.dim = self.harmonic_num + 1
311
+ self.sampling_rate = samp_rate
312
+ self.voiced_threshold = voiced_threshold
313
+
314
+ def _f02uv(self, f0):
315
+ # generate uv signal
316
+ uv = torch.ones_like(f0)
317
+ uv = uv * (f0 > self.voiced_threshold)
318
+ return uv.float()
319
+
320
+ def forward(self, f0, upp):
321
+ """sine_tensor, uv = forward(f0)
322
+ input F0: tensor(batchsize=1, length, dim=1)
323
+ f0 for unvoiced steps should be 0
324
+ output sine_tensor: tensor(batchsize=1, length, dim)
325
+ output uv: tensor(batchsize=1, length, 1)
326
+ """
327
+ with torch.no_grad():
328
+ f0 = f0[:, None].transpose(1, 2)
329
+ f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
330
+ # fundamental component
331
+ f0_buf[:, :, 0] = f0[:, :, 0]
332
+ for idx in np.arange(self.harmonic_num):
333
+ f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
334
+ idx + 2
335
+ ) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
336
+ rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
337
+ rand_ini = torch.rand(
338
+ f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
339
+ )
340
+ rand_ini[:, 0] = 0
341
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
342
+ tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
343
+ tmp_over_one *= upp
344
+ tmp_over_one = F.interpolate(
345
+ tmp_over_one.transpose(2, 1),
346
+ scale_factor=upp,
347
+ mode="linear",
348
+ align_corners=True,
349
+ ).transpose(2, 1)
350
+ rad_values = F.interpolate(
351
+ rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
352
+ ).transpose(
353
+ 2, 1
354
+ ) #######
355
+ tmp_over_one %= 1
356
+ tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
357
+ cumsum_shift = torch.zeros_like(rad_values)
358
+ cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
359
+ sine_waves = torch.sin(
360
+ torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
361
+ )
362
+ sine_waves = sine_waves * self.sine_amp
363
+ uv = self._f02uv(f0)
364
+ uv = F.interpolate(
365
+ uv.transpose(2, 1), scale_factor=upp, mode="nearest"
366
+ ).transpose(2, 1)
367
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
368
+ noise = noise_amp * torch.randn_like(sine_waves)
369
+ sine_waves = sine_waves * uv + noise
370
+ return sine_waves, uv, noise
371
+
372
+
373
+ class SourceModuleHnNSF(torch.nn.Module):
374
+ """SourceModule for hn-nsf
375
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
376
+ add_noise_std=0.003, voiced_threshod=0)
377
+ sampling_rate: sampling_rate in Hz
378
+ harmonic_num: number of harmonic above F0 (default: 0)
379
+ sine_amp: amplitude of sine source signal (default: 0.1)
380
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
381
+ note that amplitude of noise in unvoiced is decided
382
+ by sine_amp
383
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
384
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
385
+ F0_sampled (batchsize, length, 1)
386
+ Sine_source (batchsize, length, 1)
387
+ noise_source (batchsize, length 1)
388
+ uv (batchsize, length, 1)
389
+ """
390
+
391
+ def __init__(
392
+ self,
393
+ sampling_rate,
394
+ harmonic_num=0,
395
+ sine_amp=0.1,
396
+ add_noise_std=0.003,
397
+ voiced_threshod=0,
398
+ is_half=True,
399
+ ):
400
+ super(SourceModuleHnNSF, self).__init__()
401
+
402
+ self.sine_amp = sine_amp
403
+ self.noise_std = add_noise_std
404
+ self.is_half = is_half
405
+ # to produce sine waveforms
406
+ self.l_sin_gen = SineGen(
407
+ sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
408
+ )
409
+
410
+ # to merge source harmonics into a single excitation
411
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
412
+ self.l_tanh = torch.nn.Tanh()
413
+
414
+ def forward(self, x, upp=None):
415
+ sine_wavs, uv, _ = self.l_sin_gen(x, upp)
416
+ if self.is_half:
417
+ sine_wavs = sine_wavs.half()
418
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
419
+ return sine_merge, None, None # noise, uv
420
+
421
+
422
+ class GeneratorNSF(torch.nn.Module):
423
+ def __init__(
424
+ self,
425
+ initial_channel,
426
+ resblock,
427
+ resblock_kernel_sizes,
428
+ resblock_dilation_sizes,
429
+ upsample_rates,
430
+ upsample_initial_channel,
431
+ upsample_kernel_sizes,
432
+ gin_channels,
433
+ sr,
434
+ is_half=False,
435
+ ):
436
+ super(GeneratorNSF, self).__init__()
437
+ self.num_kernels = len(resblock_kernel_sizes)
438
+ self.num_upsamples = len(upsample_rates)
439
+
440
+ self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
441
+ self.m_source = SourceModuleHnNSF(
442
+ sampling_rate=sr, harmonic_num=0, is_half=is_half
443
+ )
444
+ self.noise_convs = nn.ModuleList()
445
+ self.conv_pre = Conv1d(
446
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
447
+ )
448
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
449
+
450
+ self.ups = nn.ModuleList()
451
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
452
+ c_cur = upsample_initial_channel // (2 ** (i + 1))
453
+ self.ups.append(
454
+ weight_norm(
455
+ ConvTranspose1d(
456
+ upsample_initial_channel // (2**i),
457
+ upsample_initial_channel // (2 ** (i + 1)),
458
+ k,
459
+ u,
460
+ padding=(k - u) // 2,
461
+ )
462
+ )
463
+ )
464
+ if i + 1 < len(upsample_rates):
465
+ stride_f0 = np.prod(upsample_rates[i + 1 :])
466
+ self.noise_convs.append(
467
+ Conv1d(
468
+ 1,
469
+ c_cur,
470
+ kernel_size=stride_f0 * 2,
471
+ stride=stride_f0,
472
+ padding=stride_f0 // 2,
473
+ )
474
+ )
475
+ else:
476
+ self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
477
+
478
+ self.resblocks = nn.ModuleList()
479
+ for i in range(len(self.ups)):
480
+ ch = upsample_initial_channel // (2 ** (i + 1))
481
+ for j, (k, d) in enumerate(
482
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
483
+ ):
484
+ self.resblocks.append(resblock(ch, k, d))
485
+
486
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
487
+ self.ups.apply(init_weights)
488
+
489
+ if gin_channels != 0:
490
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
491
+
492
+ self.upp = np.prod(upsample_rates)
493
+
494
+ def forward(self, x, f0, g=None):
495
+ har_source, noi_source, uv = self.m_source(f0, self.upp)
496
+ har_source = har_source.transpose(1, 2)
497
+ x = self.conv_pre(x)
498
+ if g is not None:
499
+ x = x + self.cond(g)
500
+
501
+ for i in range(self.num_upsamples):
502
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
503
+ x = self.ups[i](x)
504
+ x_source = self.noise_convs[i](har_source)
505
+ x = x + x_source
506
+ xs = None
507
+ for j in range(self.num_kernels):
508
+ if xs is None:
509
+ xs = self.resblocks[i * self.num_kernels + j](x)
510
+ else:
511
+ xs += self.resblocks[i * self.num_kernels + j](x)
512
+ x = xs / self.num_kernels
513
+ x = F.leaky_relu(x)
514
+ x = self.conv_post(x)
515
+ x = torch.tanh(x)
516
+ return x
517
+
518
+ def remove_weight_norm(self):
519
+ for l in self.ups:
520
+ remove_weight_norm(l)
521
+ for l in self.resblocks:
522
+ l.remove_weight_norm()
523
+
524
+
525
+ sr2sr = {
526
+ "32k": 32000,
527
+ "40k": 40000,
528
+ "48k": 48000,
529
+ }
530
+
531
+
532
+ class SynthesizerTrnMs256NSFsid(nn.Module):
533
+ def __init__(
534
+ self,
535
+ spec_channels,
536
+ segment_size,
537
+ inter_channels,
538
+ hidden_channels,
539
+ filter_channels,
540
+ n_heads,
541
+ n_layers,
542
+ kernel_size,
543
+ p_dropout,
544
+ resblock,
545
+ resblock_kernel_sizes,
546
+ resblock_dilation_sizes,
547
+ upsample_rates,
548
+ upsample_initial_channel,
549
+ upsample_kernel_sizes,
550
+ spk_embed_dim,
551
+ gin_channels,
552
+ sr,
553
+ **kwargs
554
+ ):
555
+ super().__init__()
556
+ if type(sr) == type("strr"):
557
+ sr = sr2sr[sr]
558
+ self.spec_channels = spec_channels
559
+ self.inter_channels = inter_channels
560
+ self.hidden_channels = hidden_channels
561
+ self.filter_channels = filter_channels
562
+ self.n_heads = n_heads
563
+ self.n_layers = n_layers
564
+ self.kernel_size = kernel_size
565
+ self.p_dropout = p_dropout
566
+ self.resblock = resblock
567
+ self.resblock_kernel_sizes = resblock_kernel_sizes
568
+ self.resblock_dilation_sizes = resblock_dilation_sizes
569
+ self.upsample_rates = upsample_rates
570
+ self.upsample_initial_channel = upsample_initial_channel
571
+ self.upsample_kernel_sizes = upsample_kernel_sizes
572
+ self.segment_size = segment_size
573
+ self.gin_channels = gin_channels
574
+ # self.hop_length = hop_length#
575
+ self.spk_embed_dim = spk_embed_dim
576
+ self.enc_p = TextEncoder256(
577
+ inter_channels,
578
+ hidden_channels,
579
+ filter_channels,
580
+ n_heads,
581
+ n_layers,
582
+ kernel_size,
583
+ p_dropout,
584
+ )
585
+ self.dec = GeneratorNSF(
586
+ inter_channels,
587
+ resblock,
588
+ resblock_kernel_sizes,
589
+ resblock_dilation_sizes,
590
+ upsample_rates,
591
+ upsample_initial_channel,
592
+ upsample_kernel_sizes,
593
+ gin_channels=gin_channels,
594
+ sr=sr,
595
+ is_half=kwargs["is_half"],
596
+ )
597
+ self.enc_q = PosteriorEncoder(
598
+ spec_channels,
599
+ inter_channels,
600
+ hidden_channels,
601
+ 5,
602
+ 1,
603
+ 16,
604
+ gin_channels=gin_channels,
605
+ )
606
+ self.flow = ResidualCouplingBlock(
607
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
608
+ )
609
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
610
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
611
+
612
+ def remove_weight_norm(self):
613
+ self.dec.remove_weight_norm()
614
+ self.flow.remove_weight_norm()
615
+ self.enc_q.remove_weight_norm()
616
+
617
+ def forward(
618
+ self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
619
+ ): # 这里ds是id,[bs,1]
620
+ # print(1,pitch.shape)#[bs,t]
621
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
622
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
623
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
624
+ z_p = self.flow(z, y_mask, g=g)
625
+ z_slice, ids_slice = commons.rand_slice_segments(
626
+ z, y_lengths, self.segment_size
627
+ )
628
+ # print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
629
+ pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
630
+ # print(-2,pitchf.shape,z_slice.shape)
631
+ o = self.dec(z_slice, pitchf, g=g)
632
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
633
+
634
+ def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
635
+ g = self.emb_g(sid).unsqueeze(-1)
636
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
637
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
638
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
639
+ o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
640
+ return o, x_mask, (z, z_p, m_p, logs_p)
641
+
642
+
643
+ class SynthesizerTrnMs768NSFsid(nn.Module):
644
+ def __init__(
645
+ self,
646
+ spec_channels,
647
+ segment_size,
648
+ inter_channels,
649
+ hidden_channels,
650
+ filter_channels,
651
+ n_heads,
652
+ n_layers,
653
+ kernel_size,
654
+ p_dropout,
655
+ resblock,
656
+ resblock_kernel_sizes,
657
+ resblock_dilation_sizes,
658
+ upsample_rates,
659
+ upsample_initial_channel,
660
+ upsample_kernel_sizes,
661
+ spk_embed_dim,
662
+ gin_channels,
663
+ sr,
664
+ **kwargs
665
+ ):
666
+ super().__init__()
667
+ if type(sr) == type("strr"):
668
+ sr = sr2sr[sr]
669
+ self.spec_channels = spec_channels
670
+ self.inter_channels = inter_channels
671
+ self.hidden_channels = hidden_channels
672
+ self.filter_channels = filter_channels
673
+ self.n_heads = n_heads
674
+ self.n_layers = n_layers
675
+ self.kernel_size = kernel_size
676
+ self.p_dropout = p_dropout
677
+ self.resblock = resblock
678
+ self.resblock_kernel_sizes = resblock_kernel_sizes
679
+ self.resblock_dilation_sizes = resblock_dilation_sizes
680
+ self.upsample_rates = upsample_rates
681
+ self.upsample_initial_channel = upsample_initial_channel
682
+ self.upsample_kernel_sizes = upsample_kernel_sizes
683
+ self.segment_size = segment_size
684
+ self.gin_channels = gin_channels
685
+ # self.hop_length = hop_length#
686
+ self.spk_embed_dim = spk_embed_dim
687
+ self.enc_p = TextEncoder768(
688
+ inter_channels,
689
+ hidden_channels,
690
+ filter_channels,
691
+ n_heads,
692
+ n_layers,
693
+ kernel_size,
694
+ p_dropout,
695
+ )
696
+ self.dec = GeneratorNSF(
697
+ inter_channels,
698
+ resblock,
699
+ resblock_kernel_sizes,
700
+ resblock_dilation_sizes,
701
+ upsample_rates,
702
+ upsample_initial_channel,
703
+ upsample_kernel_sizes,
704
+ gin_channels=gin_channels,
705
+ sr=sr,
706
+ is_half=kwargs["is_half"],
707
+ )
708
+ self.enc_q = PosteriorEncoder(
709
+ spec_channels,
710
+ inter_channels,
711
+ hidden_channels,
712
+ 5,
713
+ 1,
714
+ 16,
715
+ gin_channels=gin_channels,
716
+ )
717
+ self.flow = ResidualCouplingBlock(
718
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
719
+ )
720
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
721
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
722
+
723
+ def remove_weight_norm(self):
724
+ self.dec.remove_weight_norm()
725
+ self.flow.remove_weight_norm()
726
+ self.enc_q.remove_weight_norm()
727
+
728
+ def forward(
729
+ self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
730
+ ): # 这里ds是id,[bs,1]
731
+ # print(1,pitch.shape)#[bs,t]
732
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
733
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
734
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
735
+ z_p = self.flow(z, y_mask, g=g)
736
+ z_slice, ids_slice = commons.rand_slice_segments(
737
+ z, y_lengths, self.segment_size
738
+ )
739
+ # print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
740
+ pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
741
+ # print(-2,pitchf.shape,z_slice.shape)
742
+ o = self.dec(z_slice, pitchf, g=g)
743
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
744
+
745
+ def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
746
+ g = self.emb_g(sid).unsqueeze(-1)
747
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
748
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
749
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
750
+ o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
751
+ return o, x_mask, (z, z_p, m_p, logs_p)
752
+
753
+
754
+ class SynthesizerTrnMs256NSFsid_nono(nn.Module):
755
+ def __init__(
756
+ self,
757
+ spec_channels,
758
+ segment_size,
759
+ inter_channels,
760
+ hidden_channels,
761
+ filter_channels,
762
+ n_heads,
763
+ n_layers,
764
+ kernel_size,
765
+ p_dropout,
766
+ resblock,
767
+ resblock_kernel_sizes,
768
+ resblock_dilation_sizes,
769
+ upsample_rates,
770
+ upsample_initial_channel,
771
+ upsample_kernel_sizes,
772
+ spk_embed_dim,
773
+ gin_channels,
774
+ sr=None,
775
+ **kwargs
776
+ ):
777
+ super().__init__()
778
+ self.spec_channels = spec_channels
779
+ self.inter_channels = inter_channels
780
+ self.hidden_channels = hidden_channels
781
+ self.filter_channels = filter_channels
782
+ self.n_heads = n_heads
783
+ self.n_layers = n_layers
784
+ self.kernel_size = kernel_size
785
+ self.p_dropout = p_dropout
786
+ self.resblock = resblock
787
+ self.resblock_kernel_sizes = resblock_kernel_sizes
788
+ self.resblock_dilation_sizes = resblock_dilation_sizes
789
+ self.upsample_rates = upsample_rates
790
+ self.upsample_initial_channel = upsample_initial_channel
791
+ self.upsample_kernel_sizes = upsample_kernel_sizes
792
+ self.segment_size = segment_size
793
+ self.gin_channels = gin_channels
794
+ # self.hop_length = hop_length#
795
+ self.spk_embed_dim = spk_embed_dim
796
+ self.enc_p = TextEncoder256(
797
+ inter_channels,
798
+ hidden_channels,
799
+ filter_channels,
800
+ n_heads,
801
+ n_layers,
802
+ kernel_size,
803
+ p_dropout,
804
+ f0=False,
805
+ )
806
+ self.dec = Generator(
807
+ inter_channels,
808
+ resblock,
809
+ resblock_kernel_sizes,
810
+ resblock_dilation_sizes,
811
+ upsample_rates,
812
+ upsample_initial_channel,
813
+ upsample_kernel_sizes,
814
+ gin_channels=gin_channels,
815
+ )
816
+ self.enc_q = PosteriorEncoder(
817
+ spec_channels,
818
+ inter_channels,
819
+ hidden_channels,
820
+ 5,
821
+ 1,
822
+ 16,
823
+ gin_channels=gin_channels,
824
+ )
825
+ self.flow = ResidualCouplingBlock(
826
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
827
+ )
828
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
829
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
830
+
831
+ def remove_weight_norm(self):
832
+ self.dec.remove_weight_norm()
833
+ self.flow.remove_weight_norm()
834
+ self.enc_q.remove_weight_norm()
835
+
836
+ def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
837
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
838
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
839
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
840
+ z_p = self.flow(z, y_mask, g=g)
841
+ z_slice, ids_slice = commons.rand_slice_segments(
842
+ z, y_lengths, self.segment_size
843
+ )
844
+ o = self.dec(z_slice, g=g)
845
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
846
+
847
+ def infer(self, phone, phone_lengths, sid, max_len=None):
848
+ g = self.emb_g(sid).unsqueeze(-1)
849
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
850
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
851
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
852
+ o = self.dec((z * x_mask)[:, :, :max_len], g=g)
853
+ return o, x_mask, (z, z_p, m_p, logs_p)
854
+
855
+
856
+ class SynthesizerTrnMs768NSFsid_nono(nn.Module):
857
+ def __init__(
858
+ self,
859
+ spec_channels,
860
+ segment_size,
861
+ inter_channels,
862
+ hidden_channels,
863
+ filter_channels,
864
+ n_heads,
865
+ n_layers,
866
+ kernel_size,
867
+ p_dropout,
868
+ resblock,
869
+ resblock_kernel_sizes,
870
+ resblock_dilation_sizes,
871
+ upsample_rates,
872
+ upsample_initial_channel,
873
+ upsample_kernel_sizes,
874
+ spk_embed_dim,
875
+ gin_channels,
876
+ sr=None,
877
+ **kwargs
878
+ ):
879
+ super().__init__()
880
+ self.spec_channels = spec_channels
881
+ self.inter_channels = inter_channels
882
+ self.hidden_channels = hidden_channels
883
+ self.filter_channels = filter_channels
884
+ self.n_heads = n_heads
885
+ self.n_layers = n_layers
886
+ self.kernel_size = kernel_size
887
+ self.p_dropout = p_dropout
888
+ self.resblock = resblock
889
+ self.resblock_kernel_sizes = resblock_kernel_sizes
890
+ self.resblock_dilation_sizes = resblock_dilation_sizes
891
+ self.upsample_rates = upsample_rates
892
+ self.upsample_initial_channel = upsample_initial_channel
893
+ self.upsample_kernel_sizes = upsample_kernel_sizes
894
+ self.segment_size = segment_size
895
+ self.gin_channels = gin_channels
896
+ # self.hop_length = hop_length#
897
+ self.spk_embed_dim = spk_embed_dim
898
+ self.enc_p = TextEncoder768(
899
+ inter_channels,
900
+ hidden_channels,
901
+ filter_channels,
902
+ n_heads,
903
+ n_layers,
904
+ kernel_size,
905
+ p_dropout,
906
+ f0=False,
907
+ )
908
+ self.dec = Generator(
909
+ inter_channels,
910
+ resblock,
911
+ resblock_kernel_sizes,
912
+ resblock_dilation_sizes,
913
+ upsample_rates,
914
+ upsample_initial_channel,
915
+ upsample_kernel_sizes,
916
+ gin_channels=gin_channels,
917
+ )
918
+ self.enc_q = PosteriorEncoder(
919
+ spec_channels,
920
+ inter_channels,
921
+ hidden_channels,
922
+ 5,
923
+ 1,
924
+ 16,
925
+ gin_channels=gin_channels,
926
+ )
927
+ self.flow = ResidualCouplingBlock(
928
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
929
+ )
930
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
931
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
932
+
933
+ def remove_weight_norm(self):
934
+ self.dec.remove_weight_norm()
935
+ self.flow.remove_weight_norm()
936
+ self.enc_q.remove_weight_norm()
937
+
938
+ def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
939
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
940
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
941
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
942
+ z_p = self.flow(z, y_mask, g=g)
943
+ z_slice, ids_slice = commons.rand_slice_segments(
944
+ z, y_lengths, self.segment_size
945
+ )
946
+ o = self.dec(z_slice, g=g)
947
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
948
+
949
+ def infer(self, phone, phone_lengths, sid, max_len=None):
950
+ g = self.emb_g(sid).unsqueeze(-1)
951
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
952
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
953
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
954
+ o = self.dec((z * x_mask)[:, :, :max_len], g=g)
955
+ return o, x_mask, (z, z_p, m_p, logs_p)
956
+
957
+
958
+ class MultiPeriodDiscriminator(torch.nn.Module):
959
+ def __init__(self, use_spectral_norm=False):
960
+ super(MultiPeriodDiscriminator, self).__init__()
961
+ periods = [2, 3, 5, 7, 11, 17]
962
+ # periods = [3, 5, 7, 11, 17, 23, 37]
963
+
964
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
965
+ discs = discs + [
966
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
967
+ ]
968
+ self.discriminators = nn.ModuleList(discs)
969
+
970
+ def forward(self, y, y_hat):
971
+ y_d_rs = [] #
972
+ y_d_gs = []
973
+ fmap_rs = []
974
+ fmap_gs = []
975
+ for i, d in enumerate(self.discriminators):
976
+ y_d_r, fmap_r = d(y)
977
+ y_d_g, fmap_g = d(y_hat)
978
+ # for j in range(len(fmap_r)):
979
+ # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
980
+ y_d_rs.append(y_d_r)
981
+ y_d_gs.append(y_d_g)
982
+ fmap_rs.append(fmap_r)
983
+ fmap_gs.append(fmap_g)
984
+
985
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
986
+
987
+
988
+ class MultiPeriodDiscriminatorV2(torch.nn.Module):
989
+ def __init__(self, use_spectral_norm=False):
990
+ super(MultiPeriodDiscriminatorV2, self).__init__()
991
+ # periods = [2, 3, 5, 7, 11, 17]
992
+ periods = [2, 3, 5, 7, 11, 17, 23, 37]
993
+
994
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
995
+ discs = discs + [
996
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
997
+ ]
998
+ self.discriminators = nn.ModuleList(discs)
999
+
1000
+ def forward(self, y, y_hat):
1001
+ y_d_rs = [] #
1002
+ y_d_gs = []
1003
+ fmap_rs = []
1004
+ fmap_gs = []
1005
+ for i, d in enumerate(self.discriminators):
1006
+ y_d_r, fmap_r = d(y)
1007
+ y_d_g, fmap_g = d(y_hat)
1008
+ # for j in range(len(fmap_r)):
1009
+ # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
1010
+ y_d_rs.append(y_d_r)
1011
+ y_d_gs.append(y_d_g)
1012
+ fmap_rs.append(fmap_r)
1013
+ fmap_gs.append(fmap_g)
1014
+
1015
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
1016
+
1017
+
1018
+ class DiscriminatorS(torch.nn.Module):
1019
+ def __init__(self, use_spectral_norm=False):
1020
+ super(DiscriminatorS, self).__init__()
1021
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
1022
+ self.convs = nn.ModuleList(
1023
+ [
1024
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
1025
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
1026
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
1027
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
1028
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
1029
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
1030
+ ]
1031
+ )
1032
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
1033
+
1034
+ def forward(self, x):
1035
+ fmap = []
1036
+
1037
+ for l in self.convs:
1038
+ x = l(x)
1039
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
1040
+ fmap.append(x)
1041
+ x = self.conv_post(x)
1042
+ fmap.append(x)
1043
+ x = torch.flatten(x, 1, -1)
1044
+
1045
+ return x, fmap
1046
+
1047
+
1048
+ class DiscriminatorP(torch.nn.Module):
1049
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
1050
+ super(DiscriminatorP, self).__init__()
1051
+ self.period = period
1052
+ self.use_spectral_norm = use_spectral_norm
1053
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
1054
+ self.convs = nn.ModuleList(
1055
+ [
1056
+ norm_f(
1057
+ Conv2d(
1058
+ 1,
1059
+ 32,
1060
+ (kernel_size, 1),
1061
+ (stride, 1),
1062
+ padding=(get_padding(kernel_size, 1), 0),
1063
+ )
1064
+ ),
1065
+ norm_f(
1066
+ Conv2d(
1067
+ 32,
1068
+ 128,
1069
+ (kernel_size, 1),
1070
+ (stride, 1),
1071
+ padding=(get_padding(kernel_size, 1), 0),
1072
+ )
1073
+ ),
1074
+ norm_f(
1075
+ Conv2d(
1076
+ 128,
1077
+ 512,
1078
+ (kernel_size, 1),
1079
+ (stride, 1),
1080
+ padding=(get_padding(kernel_size, 1), 0),
1081
+ )
1082
+ ),
1083
+ norm_f(
1084
+ Conv2d(
1085
+ 512,
1086
+ 1024,
1087
+ (kernel_size, 1),
1088
+ (stride, 1),
1089
+ padding=(get_padding(kernel_size, 1), 0),
1090
+ )
1091
+ ),
1092
+ norm_f(
1093
+ Conv2d(
1094
+ 1024,
1095
+ 1024,
1096
+ (kernel_size, 1),
1097
+ 1,
1098
+ padding=(get_padding(kernel_size, 1), 0),
1099
+ )
1100
+ ),
1101
+ ]
1102
+ )
1103
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
1104
+
1105
+ def forward(self, x):
1106
+ fmap = []
1107
+
1108
+ # 1d to 2d
1109
+ b, c, t = x.shape
1110
+ if t % self.period != 0: # pad first
1111
+ n_pad = self.period - (t % self.period)
1112
+ x = F.pad(x, (0, n_pad), "reflect")
1113
+ t = t + n_pad
1114
+ x = x.view(b, c, t // self.period, self.period)
1115
+
1116
+ for l in self.convs:
1117
+ x = l(x)
1118
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
1119
+ fmap.append(x)
1120
+ x = self.conv_post(x)
1121
+ fmap.append(x)
1122
+ x = torch.flatten(x, 1, -1)
1123
+
1124
+ return x, fmap
lib/infer_pack/onnx_inference.py CHANGED
@@ -39,7 +39,9 @@ def get_f0_predictor(f0_predictor, hop_length, sampling_rate, **kargs):
39
  hop_length=hop_length, sampling_rate=sampling_rate
40
  )
41
  elif f0_predictor == "harvest":
42
- from lib.infer_pack.modules.F0Predictor.HarvestF0Predictor import HarvestF0Predictor
 
 
43
 
44
  f0_predictor_object = HarvestF0Predictor(
45
  hop_length=hop_length, sampling_rate=sampling_rate
 
39
  hop_length=hop_length, sampling_rate=sampling_rate
40
  )
41
  elif f0_predictor == "harvest":
42
+ from lib.infer_pack.modules.F0Predictor.HarvestF0Predictor import (
43
+ HarvestF0Predictor,
44
+ )
45
 
46
  f0_predictor_object = HarvestF0Predictor(
47
  hop_length=hop_length, sampling_rate=sampling_rate
requirements.txt CHANGED
@@ -8,7 +8,7 @@ librosa==0.9.1
8
  fairseq==0.12.2
9
  faiss-cpu==1.7.3
10
  gradio==3.36.1
11
- pyworld>=0.3.2
12
  soundfile>=0.12.1
13
  praat-parselmouth>=0.4.2
14
  httpx==0.23.0
 
8
  fairseq==0.12.2
9
  faiss-cpu==1.7.3
10
  gradio==3.36.1
11
+ pyworld==0.3.2
12
  soundfile>=0.12.1
13
  praat-parselmouth>=0.4.2
14
  httpx==0.23.0
vc_infer_pipeline.py CHANGED
@@ -1,4 +1,4 @@
1
- import numpy as np, parselmouth, torch, pdb
2
  from time import time as ttime
3
  import torch.nn.functional as F
4
  import scipy.signal as signal
@@ -6,6 +6,9 @@ import pyworld, os, traceback, faiss, librosa, torchcrepe
6
  from scipy import signal
7
  from functools import lru_cache
8
 
 
 
 
9
  bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
10
 
11
  input_audio_path2wav = {}
@@ -124,6 +127,15 @@ class VC(object):
124
  f0 = torchcrepe.filter.mean(f0, 3)
125
  f0[pd < 0.1] = 0
126
  f0 = f0[0].cpu().numpy()
 
 
 
 
 
 
 
 
 
127
  f0 *= pow(2, f0_up_key / 12)
128
  # with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
129
  tf0 = self.sr // self.window # 每秒f0点数
 
1
+ import numpy as np, parselmouth, torch, pdb, sys, os
2
  from time import time as ttime
3
  import torch.nn.functional as F
4
  import scipy.signal as signal
 
6
  from scipy import signal
7
  from functools import lru_cache
8
 
9
+ now_dir = os.getcwd()
10
+ sys.path.append(now_dir)
11
+
12
  bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
13
 
14
  input_audio_path2wav = {}
 
127
  f0 = torchcrepe.filter.mean(f0, 3)
128
  f0[pd < 0.1] = 0
129
  f0 = f0[0].cpu().numpy()
130
+ elif f0_method == "rmvpe":
131
+ if hasattr(self, "model_rmvpe") == False:
132
+ from rmvpe import RMVPE
133
+
134
+ print("loading rmvpe model")
135
+ self.model_rmvpe = RMVPE(
136
+ "rmvpe.pt", is_half=self.is_half, device=self.device
137
+ )
138
+ f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
139
  f0 *= pow(2, f0_up_key / 12)
140
  # with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
141
  tf0 = self.sr // self.window # 每秒f0点数