Arrcttacsrks commited on
Commit
f53f870
·
verified ·
1 Parent(s): 368a8e6

Upload llama.cpp/convert_llama_ggml_to_gguf.py with huggingface_hub

Browse files
llama.cpp/convert_llama_ggml_to_gguf.py ADDED
@@ -0,0 +1,450 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ from __future__ import annotations
3
+
4
+ import logging
5
+ import argparse
6
+ import os
7
+ import struct
8
+ import sys
9
+ from enum import IntEnum
10
+ from pathlib import Path
11
+
12
+ import numpy as np
13
+
14
+ if 'NO_LOCAL_GGUF' not in os.environ:
15
+ sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
16
+ import gguf
17
+
18
+ logger = logging.getLogger("ggml-to-gguf")
19
+
20
+
21
+ class GGMLFormat(IntEnum):
22
+ GGML = 0
23
+ GGMF = 1
24
+ GGJT = 2
25
+
26
+
27
+ class GGMLFType(IntEnum):
28
+ ALL_F32 = 0
29
+ MOSTLY_F16 = 1
30
+ MOSTLY_Q4_0 = 2
31
+ MOSTLY_Q4_1 = 3
32
+ MOSTLY_Q4_1_SOME_F16 = 4
33
+ MOSTLY_Q8_0 = 7
34
+ MOSTLY_Q5_0 = 8
35
+ MOSTLY_Q5_1 = 9
36
+ MOSTLY_Q2_K = 10
37
+ MOSTLY_Q3_K_S = 11
38
+ MOSTLY_Q3_K_M = 12
39
+ MOSTLY_Q3_K_L = 13
40
+ MOSTLY_Q4_K_S = 14
41
+ MOSTLY_Q4_K_M = 15
42
+ MOSTLY_Q5_K_S = 16
43
+ MOSTLY_Q5_K_M = 17
44
+ MOSTLY_Q6_K = 18
45
+
46
+
47
+ class Hyperparameters:
48
+ def __init__(self):
49
+ self.n_vocab = self.n_embd = self.n_mult = self.n_head = 0
50
+ self.n_layer = self.n_rot = self.n_ff = 0
51
+ self.ftype = GGMLFType.ALL_F32
52
+
53
+ def set_n_ff(self, model):
54
+ ff_tensor_idx = model.tensor_map.get(b'layers.0.feed_forward.w1.weight')
55
+ assert ff_tensor_idx is not None, 'Missing layer 0 FF tensor'
56
+ ff_tensor = model.tensors[ff_tensor_idx]
57
+ self.n_ff = ff_tensor.dims[1]
58
+
59
+ def load(self, data, offset):
60
+ (
61
+ self.n_vocab,
62
+ self.n_embd,
63
+ self.n_mult,
64
+ self.n_head,
65
+ self.n_layer,
66
+ self.n_rot,
67
+ ftype,
68
+ ) = struct.unpack('<7I', data[offset:offset + (4 * 7)])
69
+ try:
70
+ self.ftype = GGMLFType(ftype)
71
+ except ValueError:
72
+ raise ValueError(f'Invalid ftype {ftype}')
73
+ return 4 * 7
74
+
75
+ def __str__(self):
76
+ return f'<Hyperparameters: n_vocab={self.n_vocab}, n_embd={self.n_embd}, n_mult={self.n_mult}, n_head={self.n_head}, n_layer={self.n_layer}, n_rot={self.n_rot}, n_ff={self.n_ff}, ftype={self.ftype.name}>'
77
+
78
+
79
+ class Vocab:
80
+ def __init__(self, load_scores = True):
81
+ self.items = []
82
+ self.load_scores = load_scores
83
+
84
+ def load(self, data, offset, n_vocab):
85
+ orig_offset = offset
86
+ for _ in range(n_vocab):
87
+ itemlen = struct.unpack('<I', data[offset:offset + 4])[0]
88
+ assert itemlen < 4096, 'Absurd vocab item length'
89
+ offset += 4
90
+ item_text = bytes(data[offset:offset + itemlen])
91
+ offset += itemlen
92
+ if self.load_scores:
93
+ item_score = struct.unpack('<f', data[offset:offset + 4])[0]
94
+ offset += 4
95
+ else:
96
+ item_score = 0.0
97
+ self.items.append((item_text, item_score))
98
+ return offset - orig_offset
99
+
100
+
101
+ class Tensor:
102
+ def __init__(self, use_padding = True):
103
+ self.name = None
104
+ self.dims: tuple[int, ...] = ()
105
+ self.dtype = None
106
+ self.start_offset = 0
107
+ self.len_bytes = np.int64(0)
108
+ self.use_padding = use_padding
109
+
110
+ def load(self, data, offset):
111
+ orig_offset = offset
112
+ (n_dims, name_len, dtype) = struct.unpack('<3I', data[offset:offset + 12])
113
+ assert n_dims >= 0 and n_dims <= 4, f'Invalid tensor dimensions {n_dims}'
114
+ assert name_len < 4096, 'Absurd tensor name length'
115
+ quant = gguf.GGML_QUANT_SIZES.get(dtype)
116
+ assert quant is not None, 'Unknown tensor type'
117
+ (blksize, tysize) = quant
118
+ offset += 12
119
+ self.dtype= gguf.GGMLQuantizationType(dtype)
120
+ self.dims = struct.unpack(f'<{n_dims}I', data[offset:offset + (4 * n_dims)])
121
+ offset += 4 * n_dims
122
+ self.name = bytes(data[offset:offset + name_len])
123
+ offset += name_len
124
+ pad = ((offset + 31) & ~31) - offset if self.use_padding else 0
125
+ offset += pad
126
+ n_elems = np.prod(self.dims)
127
+ n_bytes = np.int64(np.int64(n_elems) * np.int64(tysize)) // np.int64(blksize)
128
+ self.start_offset = offset
129
+ self.len_bytes = n_bytes
130
+ offset += n_bytes
131
+ return offset - orig_offset
132
+
133
+
134
+ class GGMLModel:
135
+
136
+ file_format: GGMLFormat
137
+ format_version: int
138
+
139
+ def __init__(self):
140
+ self.hyperparameters = None
141
+ self.vocab = None
142
+ self.tensor_map = {}
143
+ self.tensors = []
144
+
145
+ def validate_header(self, data, offset):
146
+ magic = bytes(data[offset:offset + 4])
147
+ if magic == b'GGUF':
148
+ raise ValueError('File is already in GGUF format.')
149
+ if magic == b'lmgg':
150
+ self.file_format = GGMLFormat.GGML
151
+ self.format_version = 1
152
+ return 4
153
+ version = struct.unpack('<I', data[offset + 4:offset + 8])[0]
154
+ if magic == b'fmgg':
155
+ if version != 1:
156
+ raise ValueError(f'Cannot handle unexpected GGMF file version {version}')
157
+ self.file_format = GGMLFormat.GGMF
158
+ self.format_version = version
159
+ return 8
160
+ if magic == b'tjgg':
161
+ if version < 1 or version > 3:
162
+ raise ValueError(f'Cannot handle unexpected GGJT file version {version}')
163
+ self.file_format = GGMLFormat.GGJT
164
+ self.format_version = version
165
+ return 8
166
+ raise ValueError(f"Unexpected file magic {magic!r}! This doesn't look like a GGML format file.")
167
+
168
+ def validate_conversion(self, ftype):
169
+ err = ''
170
+ if (self.file_format < GGMLFormat.GGJT or self.format_version < 2):
171
+ if ftype not in (GGMLFType.ALL_F32, GGMLFType.MOSTLY_F16):
172
+ err = 'Quantizations changed in GGJTv2. Can only convert unquantized GGML files older than GGJTv2.'
173
+ elif (self.file_format == GGMLFormat.GGJT and self.format_version == 2):
174
+ if ftype in (GGMLFType.MOSTLY_Q4_0, GGMLFType.MOSTLY_Q4_1,
175
+ GGMLFType.MOSTLY_Q4_1_SOME_F16, GGMLFType.MOSTLY_Q8_0):
176
+ err = 'Q4 and Q8 quantizations changed in GGJTv3.'
177
+ if len(err) > 0:
178
+ raise ValueError(f'{err} Sorry, your {self.file_format.name}v{self.format_version} file of type {ftype.name} is not eligible for conversion.')
179
+
180
+ def load(self, data, offset):
181
+ offset += self.validate_header(data, offset)
182
+ hp = Hyperparameters()
183
+ offset += hp.load(data, offset)
184
+ logger.info(f'* File format: {self.file_format.name}v{self.format_version} with ftype {hp.ftype.name}')
185
+ self.validate_conversion(hp.ftype)
186
+ vocab = Vocab(load_scores = self.file_format > GGMLFormat.GGML)
187
+ offset += vocab.load(data, offset, hp.n_vocab)
188
+ tensors: list[Tensor] = []
189
+ tensor_map = {}
190
+ while offset < len(data):
191
+ tensor = Tensor(use_padding = self.file_format > GGMLFormat.GGMF)
192
+ offset += tensor.load(data, offset)
193
+ tensor_map[tensor.name] = len(tensors)
194
+ tensors.append(tensor)
195
+ self.hyperparameters = hp
196
+ self.vocab = vocab
197
+ self.tensors = tensors
198
+ self.tensor_map = tensor_map
199
+ hp.set_n_ff(self)
200
+ return offset
201
+
202
+
203
+ class GGMLToGGUF:
204
+ def __init__(self, ggml_model, data, cfg, params_override = None, vocab_override = None, special_vocab = None):
205
+ hp = ggml_model.hyperparameters
206
+ self.model = ggml_model
207
+ self.data = data
208
+ self.cfg = cfg
209
+ self.params_override = params_override
210
+ self.vocab_override = vocab_override
211
+ self.special_vocab = special_vocab
212
+ if params_override is not None:
213
+ n_kv_head = params_override.n_head_kv
214
+ else:
215
+ if cfg.gqa == 1:
216
+ n_kv_head = hp.n_head
217
+ else:
218
+ gqa = float(cfg.gqa)
219
+ n_kv_head = None
220
+ for x in range(1, 256):
221
+ if float(hp.n_head) / float(x) == gqa:
222
+ n_kv_head = x
223
+ assert n_kv_head is not None, "Couldn't determine n_kv_head from GQA param"
224
+ logger.info(f'- Guessed n_kv_head = {n_kv_head} based on GQA {cfg.gqa}')
225
+ self.n_kv_head = n_kv_head
226
+ self.name_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.LLAMA, ggml_model.hyperparameters.n_layer)
227
+
228
+ def save(self):
229
+ logger.info('* Preparing to save GGUF file')
230
+ gguf_writer = gguf.GGUFWriter(
231
+ self.cfg.output,
232
+ gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA],
233
+ use_temp_file = False)
234
+ self.add_params(gguf_writer)
235
+ self.add_vocab(gguf_writer)
236
+ if self.special_vocab is not None:
237
+ self.special_vocab.add_to_gguf(gguf_writer)
238
+ self.add_tensors(gguf_writer)
239
+ logger.info(" gguf: write header")
240
+ gguf_writer.write_header_to_file()
241
+ logger.info(" gguf: write metadata")
242
+ gguf_writer.write_kv_data_to_file()
243
+ logger.info(" gguf: write tensors")
244
+ gguf_writer.write_tensors_to_file()
245
+ gguf_writer.close()
246
+
247
+ def add_params(self, gguf_writer):
248
+ hp = self.model.hyperparameters
249
+ cfg = self.cfg
250
+ if cfg.desc is not None:
251
+ desc = cfg.desc
252
+ else:
253
+ desc = f'converted from legacy {self.model.file_format.name}v{self.model.format_version} {hp.ftype.name} format'
254
+ try:
255
+ # Filenames aren't necessarily valid UTF8.
256
+ name = cfg.name if cfg.name is not None else cfg.input.name
257
+ except UnicodeDecodeError:
258
+ name = None
259
+ logger.info('* Adding model parameters and KV items')
260
+ if name is not None:
261
+ gguf_writer.add_name(name)
262
+ gguf_writer.add_description(desc)
263
+ gguf_writer.add_file_type(int(hp.ftype))
264
+ if self.params_override is not None:
265
+ po = self.params_override
266
+ assert po.n_embd == hp.n_embd, 'Model hyperparams mismatch'
267
+ assert po.n_layer == hp.n_layer, 'Model hyperparams mismatch'
268
+ assert po.n_head == hp.n_head, 'Model hyperparams mismatch'
269
+ gguf_writer.add_context_length (po.n_ctx)
270
+ gguf_writer.add_embedding_length (po.n_embd)
271
+ gguf_writer.add_block_count (po.n_layer)
272
+ gguf_writer.add_feed_forward_length (po.n_ff)
273
+ gguf_writer.add_rope_dimension_count(po.n_embd // po.n_head)
274
+ gguf_writer.add_head_count (po.n_head)
275
+ gguf_writer.add_head_count_kv (po.n_head_kv)
276
+ gguf_writer.add_layer_norm_rms_eps (po.f_norm_eps)
277
+ return
278
+ gguf_writer.add_context_length(cfg.context_length)
279
+ gguf_writer.add_embedding_length(hp.n_embd)
280
+ gguf_writer.add_block_count(hp.n_layer)
281
+ gguf_writer.add_feed_forward_length(hp.n_ff)
282
+ gguf_writer.add_rope_dimension_count(hp.n_embd // hp.n_head)
283
+ gguf_writer.add_head_count(hp.n_head)
284
+ gguf_writer.add_head_count_kv(self.n_kv_head)
285
+ gguf_writer.add_layer_norm_rms_eps(float(cfg.eps))
286
+
287
+ def add_vocab(self, gguf_writer):
288
+ hp = self.model.hyperparameters
289
+ gguf_writer.add_tokenizer_model('llama')
290
+ gguf_writer.add_tokenizer_pre('default')
291
+ tokens = []
292
+ scores = []
293
+ toktypes = []
294
+ if self.vocab_override is not None:
295
+ vo = self.vocab_override
296
+ logger.info('* Adding vocab item(s)')
297
+ for (_, (vbytes, score, ttype)) in enumerate(vo.all_tokens()):
298
+ tokens.append(vbytes)
299
+ scores.append(score)
300
+ toktypes.append(ttype)
301
+ assert len(tokens) == hp.n_vocab, \
302
+ f'Override vocab has a different number of items than hyperparameters - override = {len(tokens)} but n_vocab={hp.n_vocab}'
303
+ gguf_writer.add_token_list(tokens)
304
+ gguf_writer.add_token_scores(scores)
305
+ if len(toktypes) > 0:
306
+ gguf_writer.add_token_types(toktypes)
307
+ return
308
+ logger.info(f'* Adding {hp.n_vocab} vocab item(s)')
309
+ assert len(self.model.vocab.items) >= 3, 'Cannot handle unexpectedly short model vocab'
310
+ for (tokid, (vbytes, vscore)) in enumerate(self.model.vocab.items):
311
+ tt = 1 # Normal
312
+ # Special handling for UNK, BOS, EOS tokens.
313
+ if tokid <= 2:
314
+ if tokid == 0:
315
+ vbytes = b'<unk>'
316
+ tt = 2
317
+ elif tokid == 1:
318
+ vbytes = b'<s>'
319
+ tt = 3
320
+ else:
321
+ vbytes = b'</s>'
322
+ tt = 3
323
+ elif len(vbytes) == 0:
324
+ tt = 3 # Control
325
+ elif tokid >= 3 and tokid <= 258 and len(vbytes) == 1:
326
+ vbytes = bytes(f'<0x{vbytes[0]:02X}>', encoding = 'UTF-8')
327
+ tt = 6 # Byte
328
+ else:
329
+ vbytes = vbytes.replace(b' ', b'\xe2\x96\x81')
330
+ toktypes.append(tt)
331
+ tokens.append(vbytes)
332
+ scores.append(vscore)
333
+ gguf_writer.add_token_list(tokens)
334
+ gguf_writer.add_token_scores(scores)
335
+ gguf_writer.add_token_types(toktypes)
336
+ gguf_writer.add_unk_token_id(0)
337
+ gguf_writer.add_bos_token_id(1)
338
+ gguf_writer.add_eos_token_id(2)
339
+
340
+ def add_tensors(self, gguf_writer):
341
+ tensor_map = self.name_map
342
+ data = self.data
343
+ logger.info(f'* Adding {len(self.model.tensors)} tensor(s)')
344
+ for tensor in self.model.tensors:
345
+ name = str(tensor.name, 'UTF-8')
346
+ mapped_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
347
+ assert mapped_name is not None, f'Bad name {name}'
348
+ tempdims = list(tensor.dims[:])
349
+ if len(tempdims) > 1:
350
+ temp = tempdims[1]
351
+ tempdims[1] = tempdims[0]
352
+ tempdims[0] = temp
353
+ gguf_writer.add_tensor(
354
+ mapped_name,
355
+ data[tensor.start_offset:tensor.start_offset + tensor.len_bytes],
356
+ raw_shape = tempdims,
357
+ raw_dtype = tensor.dtype)
358
+
359
+
360
+ def handle_metadata(cfg, hp):
361
+ import examples.convert_legacy_llama as convert
362
+
363
+ assert cfg.model_metadata_dir.is_dir(), 'Metadata dir is not a directory'
364
+ hf_config_path = cfg.model_metadata_dir / "config.json"
365
+ orig_config_path = cfg.model_metadata_dir / "params.json"
366
+ # We pass a fake model here. "original" mode will check the shapes of some
367
+ # tensors if information is missing in the .json file: other than that, the
368
+ # model data isn't used so this should be safe (at least for now).
369
+ fakemodel = {
370
+ 'tok_embeddings.weight': convert.LazyTensor.__new__(convert.LazyTensor),
371
+ 'layers.0.feed_forward.w1.weight': convert.LazyTensor.__new__(convert.LazyTensor),
372
+ }
373
+ fakemodel['tok_embeddings.weight'].shape = [hp.n_vocab]
374
+ fakemodel['layers.0.feed_forward.w1.weight'].shape = [hp.n_ff]
375
+ if hf_config_path.exists():
376
+ params = convert.Params.loadHFTransformerJson(fakemodel, hf_config_path)
377
+ elif orig_config_path.exists():
378
+ params = convert.Params.loadOriginalParamsJson(fakemodel, orig_config_path)
379
+ else:
380
+ raise ValueError('Unable to load metadata')
381
+ vocab_path = Path(cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir)
382
+ vocab_factory = convert.VocabFactory(vocab_path)
383
+ vocab, special_vocab = vocab_factory.load_vocab(cfg.vocabtype.split(","), cfg.model_metadata_dir)
384
+ convert.check_vocab_size(params, vocab)
385
+ return params, vocab, special_vocab
386
+
387
+
388
+ def handle_args():
389
+ parser = argparse.ArgumentParser(description = 'Convert GGML models to GGUF')
390
+ parser.add_argument('--input', '-i', type = Path, required = True,
391
+ help = 'Input GGMLv3 filename')
392
+ parser.add_argument('--output', '-o', type = Path, required = True,
393
+ help ='Output GGUF filename')
394
+ parser.add_argument('--name',
395
+ help = 'Set model name')
396
+ parser.add_argument('--desc',
397
+ help = 'Set model description')
398
+ parser.add_argument('--gqa', type = int, default = 1,
399
+ help = 'grouped-query attention factor (use 8 for LLaMA2 70B)')
400
+ parser.add_argument('--eps', default = '5.0e-06',
401
+ help = 'RMS norm eps: Use 1e-6 for LLaMA1 and OpenLLaMA, use 1e-5 for LLaMA2')
402
+ parser.add_argument('--context-length', '-c', type=int, default = 2048,
403
+ help = 'Default max context length: LLaMA1 is typically 2048, LLaMA2 is typically 4096')
404
+ parser.add_argument('--model-metadata-dir', '-m', type = Path,
405
+ help ='Load HuggingFace/.pth vocab and metadata from the specified directory')
406
+ parser.add_argument("--vocab-dir", type=Path,
407
+ help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir")
408
+ parser.add_argument("--vocabtype", default="spm,hfft",
409
+ help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm,hfft)")
410
+ parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
411
+ return parser.parse_args()
412
+
413
+
414
+ def main():
415
+ cfg = handle_args()
416
+ logging.basicConfig(level=logging.DEBUG if cfg.verbose else logging.INFO)
417
+ logger.info(f'* Using config: {cfg}')
418
+ logger.warning('=== WARNING === Be aware that this conversion script is best-effort. Use a native GGUF model if possible. === WARNING ===')
419
+ if cfg.model_metadata_dir is None and (cfg.gqa == 1 or cfg.eps == '5.0e-06'):
420
+ logger.info('- Note: If converting LLaMA2, specifying "--eps 1e-5" is required. 70B models also need "--gqa 8".')
421
+ data = np.memmap(cfg.input, mode = 'r')
422
+ model = GGMLModel()
423
+ logger.info('* Scanning GGML input file')
424
+ offset = model.load(data, 0) # noqa
425
+ logger.info(f'* GGML model hyperparameters: {model.hyperparameters}')
426
+ vocab_override = None
427
+ params_override = None
428
+ special_vocab = None
429
+ if cfg.model_metadata_dir is not None:
430
+ (params_override, vocab_override, special_vocab) = handle_metadata(cfg, model.hyperparameters)
431
+ logger.info('!! Note: When overriding params the --gqa, --eps and --context-length options are ignored.')
432
+ logger.info(f'* Overriding params: {params_override}')
433
+ logger.info(f'* Overriding vocab: {vocab_override}')
434
+ logger.info(f'* Special vocab: {special_vocab}')
435
+ else:
436
+ logger.warning('\n=== WARNING === Special tokens may not be converted correctly. Use --model-metadata-dir if possible === WARNING ===\n')
437
+ if model.file_format == GGMLFormat.GGML:
438
+ logger.info('! This is a very old GGML file that does not contain vocab scores. Strongly recommend using model metadata!')
439
+ converter = GGMLToGGUF(
440
+ model, data, cfg,
441
+ params_override = params_override,
442
+ vocab_override = vocab_override,
443
+ special_vocab = special_vocab
444
+ )
445
+ converter.save()
446
+ logger.info(f'* Successful completion. Output saved to: {cfg.output}')
447
+
448
+
449
+ if __name__ == '__main__':
450
+ main()