Spaces:
Running
Running
File size: 17,050 Bytes
8eb64f2 be56d2f f1611e7 be56d2f f1611e7 be56d2f 1c18857 f1611e7 1c18857 be56d2f f1611e7 be56d2f 1c18857 be56d2f 1c18857 8eb64f2 1c18857 be56d2f 0cffa18 be56d2f 8eb64f2 be56d2f 74329f2 be56d2f 74329f2 be56d2f 74329f2 be56d2f 74329f2 be56d2f 74329f2 be56d2f 74329f2 be56d2f 74329f2 be56d2f 74329f2 1c18857 f1611e7 be56d2f 8eb64f2 be56d2f 8eb64f2 be56d2f 0cffa18 74329f2 be56d2f 0cffa18 be56d2f f1611e7 8eb64f2 be56d2f 8eb64f2 be56d2f 8eb64f2 be56d2f 8eb64f2 be56d2f 8eb64f2 be56d2f 8eb64f2 be56d2f 8eb64f2 be56d2f 16372c8 be56d2f 8eb64f2 be56d2f 74329f2 be56d2f 74329f2 be56d2f 0cffa18 be56d2f 0cffa18 be56d2f 0cffa18 f1611e7 be56d2f f1611e7 be56d2f f1611e7 be56d2f f1611e7 be56d2f f1611e7 be56d2f f1611e7 be56d2f 69fbad0 da2e88a f1611e7 69fbad0 f1611e7 69fbad0 0cffa18 be56d2f 0cffa18 be56d2f 69fbad0 0cffa18 be56d2f 0cffa18 be56d2f 69fbad0 be56d2f 69fbad0 8eb64f2 be56d2f 69fbad0 be56d2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
import os
import json
import shutil
import logging
import tempfile
from datetime import datetime
from typing import Tuple, Optional
import numpy as np
import cv2
from PIL import Image
import gradio as gr
from dotenv import load_dotenv
from huggingface_hub import HfApi, login
from insightface.app import FaceAnalysis
import roop.globals
from roop.core import (
start,
decode_execution_providers,
suggest_max_memory,
suggest_execution_threads,
)
from roop.processors.frame.core import get_frame_processors_modules
from roop.utilities import normalize_output_path
# Configure logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
# Load environment variables
load_dotenv()
def cosine_similarity(a: np.ndarray, b: np.ndarray) -> float:
"""
Calculate the cosine similarity between two vectors.
Parameters:
a (np.ndarray): First vector.
b (np.ndarray): Second vector.
Returns:
float: Cosine similarity.
"""
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b) + 1e-6)
class FaceIntegrDataset:
"""
Handler for face integration dataset upload to Hugging Face.
"""
def __init__(self, repo_id: str = "Arrcttacsrks/face_integrData") -> None:
self.token = os.getenv('hf_token')
if not self.token:
raise ValueError("HF_TOKEN environment variable is not set")
self.repo_id = repo_id
self.api = HfApi()
login(self.token)
self.temp_dir = "temp_dataset"
os.makedirs(self.temp_dir, exist_ok=True)
def create_date_folder(self) -> Tuple[str, str]:
"""
Create a folder based on the current date inside the temporary directory.
Returns:
Tuple[str, str]: The folder path and the current date string.
"""
current_date = datetime.now().strftime("%Y-%m-%d")
folder_path = os.path.join(self.temp_dir, current_date)
os.makedirs(folder_path, exist_ok=True)
return folder_path, current_date
def save_metadata(self, source_path: str, target_path: str, output_path: str, timestamp: str) -> dict:
"""
Create metadata dictionary for the face swap process.
Parameters:
source_path (str): Filename of the source image.
target_path (str): Filename of the target image.
output_path (str): Filename of the output image.
timestamp (str): Timestamp string.
Returns:
dict: Metadata information.
"""
metadata = {
"timestamp": timestamp,
"source_image": source_path,
"target_image": target_path,
"output_image": output_path,
"date_created": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
}
return metadata
def upload_to_hf(self, local_folder: str, date_folder: str) -> bool:
"""
Upload a local folder to the Hugging Face dataset repository.
Parameters:
local_folder (str): The local folder path.
date_folder (str): The subfolder in the repository.
Returns:
bool: True if upload is successful, False otherwise.
"""
try:
self.api.upload_folder(
folder_path=local_folder,
repo_id=self.repo_id,
repo_type="dataset",
path_in_repo=date_folder
)
logging.info("Successfully uploaded files to Hugging Face repository.")
return True
except Exception as e:
logging.error(f"Error uploading to Hugging Face: {str(e)}")
return False
def configure_roop_globals(source_path: str, target_path: str, output_path: str, do_face_enhancer: bool) -> None:
"""
Configure global variables required for the face swap process.
Parameters:
source_path (str): Path to the source image.
target_path (str): Path to the target image.
output_path (str): Path to save the output image.
do_face_enhancer (bool): Flag to determine if face enhancer should be used.
"""
roop.globals.source_path = source_path
roop.globals.target_path = target_path
roop.globals.output_path = normalize_output_path(source_path, target_path, output_path)
roop.globals.frame_processors = ["face_swapper", "face_enhancer"] if do_face_enhancer else ["face_swapper"]
roop.globals.headless = True
roop.globals.keep_fps = True
roop.globals.keep_audio = True
roop.globals.keep_frames = False
roop.globals.many_faces = False
roop.globals.video_encoder = "libx264"
roop.globals.video_quality = 18
roop.globals.max_memory = suggest_max_memory()
roop.globals.execution_providers = decode_execution_providers(["cuda"])
roop.globals.execution_threads = suggest_execution_threads()
def swap_face(source_file: np.ndarray, target_file: np.ndarray, doFaceEnhancer: bool) -> Optional[np.ndarray]:
"""
Perform face swapping on static images.
Parameters:
source_file (np.ndarray): Source image array.
target_file (np.ndarray): Target image array.
doFaceEnhancer (bool): Flag to apply face enhancer.
Returns:
Optional[np.ndarray]: The output image array if successful, otherwise None.
"""
folder_path = None
try:
dataset_handler = FaceIntegrDataset()
folder_path, date_folder = dataset_handler.create_date_folder()
timestamp = datetime.now().strftime("%S-%M-%H-%d-%m-%Y")
source_path = os.path.join(folder_path, f"source_{timestamp}.jpg")
target_path = os.path.join(folder_path, f"target_{timestamp}.jpg")
output_path = os.path.join(folder_path, f"OutputImage{timestamp}.jpg")
if source_file is None or target_file is None:
raise ValueError("Source and target images are required")
Image.fromarray(source_file).save(source_path)
Image.fromarray(target_file).save(target_path)
logging.info(f"Source image saved at: {source_path}")
logging.info(f"Target image saved at: {target_path}")
# Configure global parameters for roop
configure_roop_globals(source_path, target_path, output_path, doFaceEnhancer)
# Pre-check frame processors
for frame_processor in get_frame_processors_modules(roop.globals.frame_processors):
if not frame_processor.pre_check():
logging.error("Pre-check failed for frame processor.")
return None
logging.info("Starting face swap process...")
start()
metadata = dataset_handler.save_metadata(
os.path.basename(source_path),
os.path.basename(target_path),
os.path.basename(output_path),
timestamp
)
metadata_path = os.path.join(folder_path, f"metadata_{timestamp}.json")
with open(metadata_path, 'w') as f:
json.dump(metadata, f, indent=4)
upload_success = dataset_handler.upload_to_hf(folder_path, date_folder)
if upload_success:
logging.info(f"Successfully uploaded files to dataset {dataset_handler.repo_id}")
else:
logging.error("Failed to upload files to Hugging Face dataset")
if os.path.exists(roop.globals.output_path):
output_image = Image.open(roop.globals.output_path)
output_array = np.array(output_image)
shutil.rmtree(folder_path, ignore_errors=True)
return output_array
else:
logging.error("Output image not found")
shutil.rmtree(folder_path, ignore_errors=True)
return None
except Exception as e:
logging.exception(f"Error in face swap process: {str(e)}")
if folder_path and os.path.exists(folder_path):
shutil.rmtree(folder_path, ignore_errors=True)
raise gr.Error(f"Face swap failed: {str(e)}")
def swap_face_frame(frame_bgr: np.ndarray, replacement_face_rgb: np.ndarray, doFaceEnhancer: bool) -> np.ndarray:
"""
Swap face in a single video frame.
Parameters:
frame_bgr (np.ndarray): Video frame in BGR format.
replacement_face_rgb (np.ndarray): Replacement face image in RGB format.
doFaceEnhancer (bool): Flag to apply face enhancer.
Returns:
np.ndarray: Processed frame with face swapped (in RGB format).
"""
# Convert BGR to RGB for processing
frame_rgb = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB)
temp_dir = tempfile.mkdtemp(prefix="temp_faceswap_frame_")
timestamp = datetime.now().strftime("%S-%M-%H-%d-%m-%Y")
source_path = os.path.join(temp_dir, f"source_{timestamp}.jpg")
target_path = os.path.join(temp_dir, f"target_{timestamp}.jpg")
output_path = os.path.join(temp_dir, f"OutputImage_{timestamp}.jpg")
try:
Image.fromarray(frame_rgb).save(source_path)
Image.fromarray(replacement_face_rgb).save(target_path)
configure_roop_globals(source_path, target_path, output_path, doFaceEnhancer)
start()
if os.path.exists(roop.globals.output_path):
swapped_img = np.array(Image.open(roop.globals.output_path))
else:
logging.warning("Output image not found after face swap; returning original frame.")
swapped_img = frame_rgb
except Exception as e:
logging.exception(f"Error in processing frame for face swap: {str(e)}")
swapped_img = frame_rgb
finally:
shutil.rmtree(temp_dir, ignore_errors=True)
return swapped_img
def swap_face_video(reference_face: np.ndarray, replacement_face: np.ndarray, video_input: str,
similarity_threshold: float, doFaceEnhancer: bool) -> str:
"""
Perform face swapping on a video frame-by-frame.
Parameters:
reference_face (np.ndarray): Reference face image (RGB) for face locking.
replacement_face (np.ndarray): Replacement face image (RGB).
video_input (str): Path to the input video file.
similarity_threshold (float): Threshold for face similarity (0.0 - 1.0).
doFaceEnhancer (bool): Flag to apply face enhancer.
Returns:
str: Path to the output video file.
Raises:
gr.Error: If face detection fails or video cannot be processed.
"""
try:
# Initialize insightface face analysis
fa = FaceAnalysis()
fa.prepare(ctx_id=0)
# Get embedding for the reference face
ref_detections = fa.get(reference_face)
if not ref_detections:
raise gr.Error("No face detected in the reference image!")
ref_embedding = ref_detections[0].embedding
# Open video input
cap = cv2.VideoCapture(video_input)
if not cap.isOpened():
raise gr.Error("Cannot open the input video!")
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
output_video_path = "temp_faceswap_video.mp4"
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))
frame_index = 0
while True:
ret, frame = cap.read()
if not ret:
break
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
detections = fa.get(frame_rgb)
swap_this_frame = any(
cosine_similarity(det.embedding, ref_embedding) >= similarity_threshold
for det in detections
)
if swap_this_frame:
swapped_frame_rgb = swap_face_frame(frame, replacement_face, doFaceEnhancer)
swapped_frame = cv2.cvtColor(swapped_frame_rgb, cv2.COLOR_RGB2BGR)
else:
swapped_frame = frame
out.write(swapped_frame)
frame_index += 1
logging.info(f"Processed frame {frame_index}")
cap.release()
out.release()
return output_video_path
except Exception as e:
logging.exception(f"Error processing video: {str(e)}")
raise gr.Error(f"Face swap video failed: {str(e)}")
def create_interface() -> gr.Blocks:
"""
Create and return the Gradio interface for face swapping.
Returns:
gr.Blocks: The Gradio interface.
"""
custom_css = """
.container {
max-width: 1200px;
margin: auto;
padding: 20px;
}
.output-image {
min-height: 400px;
border: 1px solid #ccc;
border-radius: 8px;
padding: 10px;
}
"""
title = "Face - Integrator"
description = "Upload source and target images to perform face swap."
article = """
<div style="text-align: center; max-width: 650px; margin: 40px auto;">
<p>This tool performs face swapping with optional enhancement.</p>
</div>
"""
with gr.Blocks(title=title, css=custom_css) as app:
gr.Markdown(f"<h1 style='text-align: center;'>{title}</h1>")
gr.Markdown(description)
with gr.Tabs():
with gr.TabItem("FaceSwap Image"):
with gr.Row():
with gr.Column(scale=1):
source_image = gr.Image(
label="Source Image",
type="numpy",
sources=["upload"]
)
with gr.Column(scale=1):
target_image = gr.Image(
label="Target Image",
type="numpy",
sources=["upload"]
)
with gr.Column(scale=1):
output_image = gr.Image(
label="Output Image",
type="numpy",
interactive=False,
elem_classes="output-image"
)
with gr.Row():
enhance_checkbox = gr.Checkbox(
label="Apply Face Enhancer",
info="Improve image quality",
value=False
)
with gr.Row():
process_btn = gr.Button(
"Process Face Swap",
variant="primary",
size="lg"
)
process_btn.click(
fn=swap_face,
inputs=[source_image, target_image, enhance_checkbox],
outputs=output_image,
api_name="swap_face"
)
with gr.TabItem("FaceSwap Video"):
gr.Markdown("<h2 style='text-align:center;'>FaceSwap Video</h2>")
with gr.Row():
ref_image = gr.Image(
label="Reference Face Image (Lock Face)",
type="numpy",
sources=["upload"]
)
swap_image = gr.Image(
label="Replacement Face Image",
type="numpy",
sources=["upload"]
)
video_input = gr.Video(
label="Input Video"
)
similarity_threshold = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.7,
label="Similarity Threshold"
)
enhance_checkbox_video = gr.Checkbox(
label="Apply Face Enhancer",
info="Optional quality enhancement",
value=False
)
process_video_btn = gr.Button(
"Process FaceSwap Video",
variant="primary",
size="lg"
)
video_output = gr.Video(
label="Output Video"
)
process_video_btn.click(
fn=swap_face_video,
inputs=[ref_image, swap_image, video_input, similarity_threshold, enhance_checkbox_video],
outputs=video_output,
api_name="swap_face_video"
)
gr.Markdown(article)
return app
def main() -> None:
"""
Launch the Gradio interface.
"""
app = create_interface()
app.launch(share=False)
if __name__ == "__main__":
main()
|