import tensorflow as tf import gradio as gr import tensorflow as tf import numpy as np import nltk model = tf.keras.models.load_model('best_model') def preprocess_text(text): text = text.lower() tokens = text.split() # Re-join tokens text = ' '.join(tokens) return text def predict_spam(message): processed_text = preprocess_text(message) pred_prob = model.predict([processed_text])[0][0] label = "Hate Speech" if pred_prob > 0.5 else "Not Hate Speech" confidence = f"{pred_prob * 100:.2f}%" if label == "Hate Speech" else f"{(1 - pred_prob) * 100:.2f}%" return f"{label} (Confidence: {confidence})" iface = gr.Interface( fn=predict_spam, inputs="text", outputs="text", title="Hate Speech Detector", description="A Hate Speech detection tool created using TensorFlow. Input a message to check it out!", ) iface.launch(share=True)