Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,83 +1,10 @@
|
|
1 |
-
"https://sites.google.com/airliquide.com/sis-processsafety/knowledge/lessons-learned-sources"
|
2 |
from sentence_transformers import SentenceTransformer
|
3 |
-
|
4 |
-
#model=SentenceTransformer("all-mpnet-base-v2")
|
5 |
import streamlit as st
|
6 |
-
import pickle
|
7 |
-
import faiss
|
8 |
-
from llama_index.core import VectorStoreIndex,StorageContext
|
9 |
-
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
10 |
-
from llama_index.vector_stores.faiss import FaissVectorStore
|
11 |
-
from llama_index.core import VectorStoreIndex
|
12 |
-
from llama_index.retrievers.bm25 import BM25Retriever
|
13 |
-
from llama_index.core.postprocessor import SentenceTransformerRerank
|
14 |
-
from llama_index.core import QueryBundle
|
15 |
-
from llama_index.core.schema import NodeWithScore
|
16 |
-
from llama_index.core.retrievers import BaseRetriever
|
17 |
-
from transformers import AutoTokenizer, AutoModel
|
18 |
-
|
19 |
-
|
20 |
-
@st.cache_resource(show_spinner=False)
|
21 |
-
def load_data():
|
22 |
-
with open('nodes_clean.pkl', 'rb') as file:
|
23 |
-
nodes=pickle.load( file)
|
24 |
-
d = 768
|
25 |
-
faiss_index = faiss.IndexFlatL2(d)
|
26 |
-
vector_store = FaissVectorStore(faiss_index=faiss_index )
|
27 |
-
storage_context = StorageContext.from_defaults(vector_store=vector_store)
|
28 |
-
# use later nodes_clean
|
29 |
-
index = VectorStoreIndex(nodes,embed_model=embed_model,storage_context=storage_context)
|
30 |
-
retriever_dense = index.as_retriever(similarity_top_k=25,embedding=True)
|
31 |
-
retrieverBM25 = BM25Retriever.from_defaults(nodes=nodes, similarity_top_k=25)
|
32 |
-
hybrid_retriever = HybridRetriever(retriever_dense, retrieverBM25)
|
33 |
-
return hybrid_retriever
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
@st.cache_resource(show_spinner=False)
|
38 |
-
class models():
|
39 |
-
def __init__(self):
|
40 |
-
EMBEDDING_MODEL="BAAI/llm-embedder"
|
41 |
-
self.embed_model = HuggingFaceEmbedding(EMBEDDING_MODEL,device='cpu',)
|
42 |
-
self.reranker = SentenceTransformerRerank(top_n=25, model="BAAI/bge-reranker-base",device='cpu',)
|
43 |
-
|
44 |
-
mod=models()
|
45 |
-
embed_model=mod.embed_model
|
46 |
-
reranker= mod.reranker
|
47 |
-
|
48 |
-
class HybridRetriever(BaseRetriever):
|
49 |
-
def __init__(self, vector_retriever, bm25_retriever):
|
50 |
-
self.vector_retriever = vector_retriever
|
51 |
-
self.bm25_retriever = bm25_retriever
|
52 |
-
super().__init__()
|
53 |
-
def _retrieve(self, query, **kwargs):
|
54 |
-
bm25_nodes = self.bm25_retriever.retrieve(query, **kwargs)
|
55 |
-
vector_nodes = self.vector_retriever.retrieve(query, **kwargs)
|
56 |
-
# combine the two lists of nodes
|
57 |
-
all_nodes = []
|
58 |
-
node_ids = set()
|
59 |
-
for n in bm25_nodes + vector_nodes:
|
60 |
-
if n.node.node_id not in node_ids:
|
61 |
-
all_nodes.append(n)
|
62 |
-
node_ids.add(n.node.node_id)
|
63 |
-
return all_nodes
|
64 |
-
hybrid_retriever = load_data()
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
import re
|
71 |
-
def clean_whitespace(text,k=5):
|
72 |
-
text = text.strip()
|
73 |
-
text=" ".join([i for i in text.split("\n")[:k] if len(i.strip())>25]+text.split("\n")[k:])
|
74 |
-
text = re.sub(r"\.EU", "", text)
|
75 |
-
#text = re.sub(r"\n+", "\n", text)
|
76 |
-
text = re.sub(r"\s+", " ", text)
|
77 |
-
return text.lower()
|
78 |
-
|
79 |
|
80 |
|
|
|
|
|
81 |
|
82 |
|
83 |
def stream(reranked_nodes,text_size=700):
|
@@ -92,16 +19,11 @@ def stream(reranked_nodes,text_size=700):
|
|
92 |
file_name = i_di[0].metadata['file_name']
|
93 |
summary = i_di[0].metadata['text']
|
94 |
url = i_di[0].metadata['doc_url']
|
95 |
-
|
96 |
st.write(f"**Rank {rank+1}:** {file_name} ")
|
97 |
st.write(f"- Tittle: [{title}](%s)"% url)
|
98 |
#st.write("check out this [link](%s)" % url)
|
99 |
with st.expander(f"Summary"):
|
100 |
st.write(f"{summary}")
|
101 |
-
#st.write(f"- Summary: {summery}")
|
102 |
-
#st.link_button("Link", url)
|
103 |
-
|
104 |
-
#st.write(f"- URL: {url}")
|
105 |
with st.expander(f"Extra Text(s) "):
|
106 |
for n_extra,t in enumerate(i_di[:5]):
|
107 |
page_n=t.metadata['page_label'] if "page_label" in t.metadata else 'Unknown'
|
@@ -110,17 +32,16 @@ def stream(reranked_nodes,text_size=700):
|
|
110 |
st.markdown("""---""")
|
111 |
st.markdown("""---""")
|
112 |
|
113 |
-
|
114 |
|
115 |
# Function to perform search and return sorted documents
|
116 |
def perform_search(query):
|
117 |
if query:
|
118 |
retrieved_nodes = hybrid_retriever.retrieve(query)
|
119 |
-
reranked_nodes = reranker.
|
120 |
retrieved_nodes,
|
121 |
-
query_bundle=
|
122 |
-
|
123 |
-
),)
|
124 |
return reranked_nodes
|
125 |
else:
|
126 |
return []
|
@@ -133,11 +54,9 @@ def main():
|
|
133 |
st.title("Information Retrieval System")
|
134 |
query = st.text_input("Enter your question:")
|
135 |
|
136 |
-
|
137 |
-
|
138 |
if st.button("Search") or query:
|
139 |
sorted_docs = perform_search(query)
|
140 |
-
|
141 |
|
142 |
else:
|
143 |
sorted_docs = st.session_state.get("sorted_docs", [])
|
@@ -145,7 +64,7 @@ def main():
|
|
145 |
|
146 |
|
147 |
if sorted_docs:
|
148 |
-
stream(sorted_docs,
|
149 |
#st.write(f"Current Page Number: {page_number}")
|
150 |
|
151 |
|
|
|
|
|
1 |
from sentence_transformers import SentenceTransformer
|
2 |
+
from utils_st import load_models,load_data,clean_whitespace
|
|
|
3 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
|
6 |
+
embed_model, reranker = load_models()
|
7 |
+
hybrid_retriever = load_data(embed_model)
|
8 |
|
9 |
|
10 |
def stream(reranked_nodes,text_size=700):
|
|
|
19 |
file_name = i_di[0].metadata['file_name']
|
20 |
summary = i_di[0].metadata['text']
|
21 |
url = i_di[0].metadata['doc_url']
|
|
|
22 |
st.write(f"**Rank {rank+1}:** {file_name} ")
|
23 |
st.write(f"- Tittle: [{title}](%s)"% url)
|
24 |
#st.write("check out this [link](%s)" % url)
|
25 |
with st.expander(f"Summary"):
|
26 |
st.write(f"{summary}")
|
|
|
|
|
|
|
|
|
27 |
with st.expander(f"Extra Text(s) "):
|
28 |
for n_extra,t in enumerate(i_di[:5]):
|
29 |
page_n=t.metadata['page_label'] if "page_label" in t.metadata else 'Unknown'
|
|
|
32 |
st.markdown("""---""")
|
33 |
st.markdown("""---""")
|
34 |
|
35 |
+
|
36 |
|
37 |
# Function to perform search and return sorted documents
|
38 |
def perform_search(query):
|
39 |
if query:
|
40 |
retrieved_nodes = hybrid_retriever.retrieve(query)
|
41 |
+
reranked_nodes = reranker.predict(
|
42 |
retrieved_nodes,
|
43 |
+
query_bundle=query
|
44 |
+
)
|
|
|
45 |
return reranked_nodes
|
46 |
else:
|
47 |
return []
|
|
|
54 |
st.title("Information Retrieval System")
|
55 |
query = st.text_input("Enter your question:")
|
56 |
|
|
|
|
|
57 |
if st.button("Search") or query:
|
58 |
sorted_docs = perform_search(query)
|
59 |
+
st.session_state.sorted_docs = sorted_docs
|
60 |
|
61 |
else:
|
62 |
sorted_docs = st.session_state.get("sorted_docs", [])
|
|
|
64 |
|
65 |
|
66 |
if sorted_docs:
|
67 |
+
stream(sorted_docs,700)
|
68 |
#st.write(f"Current Page Number: {page_number}")
|
69 |
|
70 |
|