vits-simple-api / bert_vits2 /text /chinese_bert.py
Artrajz's picture
update
14e19a5
raw
history blame
2.53 kB
import os
import config
import torch
from transformers import AutoTokenizer, AutoModelForMaskedLM
from logger import logger
from utils.download import download_and_verify
from config import DEVICE as device
URLS = [
"https://huggingface.co/hfl/chinese-roberta-wwm-ext-large/resolve/main/pytorch_model.bin",
]
TARGET_PATH = os.path.join(config.ABS_PATH, "bert_vits2/bert/chinese-roberta-wwm-ext-large/pytorch_model.bin")
EXPECTED_MD5 = None
if not os.path.exists(TARGET_PATH):
success, message = download_and_verify(URLS, TARGET_PATH, EXPECTED_MD5)
try:
logger.info("Loading chinese-roberta-wwm-ext-large...")
tokenizer = AutoTokenizer.from_pretrained(config.ABS_PATH + "/bert_vits2/bert/chinese-roberta-wwm-ext-large")
model = AutoModelForMaskedLM.from_pretrained(config.ABS_PATH + "/bert_vits2/bert/chinese-roberta-wwm-ext-large").to(
device)
logger.info("Loading finished.")
except Exception as e:
logger.error(e)
logger.error(f"Please download pytorch_model.bin from hfl/chinese-roberta-wwm-ext-large.")
def get_bert_feature(text, word2ph, device=config.DEVICE):
with torch.no_grad():
inputs = tokenizer(text, return_tensors='pt')
for i in inputs:
inputs[i] = inputs[i].to(device)
res = model(**inputs, output_hidden_states=True)
res = torch.cat(res['hidden_states'][-3:-2], -1)[0].cpu()
assert len(word2ph) == len(text) + 2
word2phone = word2ph
phone_level_feature = []
for i in range(len(word2phone)):
repeat_feature = res[i].repeat(word2phone[i], 1)
phone_level_feature.append(repeat_feature)
phone_level_feature = torch.cat(phone_level_feature, dim=0)
return phone_level_feature.T
if __name__ == '__main__':
import torch
word_level_feature = torch.rand(38, 1024) # 12个词,每个词1024维特征
word2phone = [1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2,
2, 2, 2, 1]
# 计算总帧数
total_frames = sum(word2phone)
print(word_level_feature.shape)
print(word2phone)
phone_level_feature = []
for i in range(len(word2phone)):
print(word_level_feature[i].shape)
# 对每个词重复word2phone[i]次
repeat_feature = word_level_feature[i].repeat(word2phone[i], 1)
phone_level_feature.append(repeat_feature)
phone_level_feature = torch.cat(phone_level_feature, dim=0)
print(phone_level_feature.shape) # torch.Size([36, 1024])