animesh007
commited on
Commit
·
1b94225
1
Parent(s):
e68ea0d
added app.py
Browse files
app.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import shutil
|
4 |
+
import torch
|
5 |
+
from PIL import Image
|
6 |
+
import argparse
|
7 |
+
import pathlib
|
8 |
+
|
9 |
+
os.system("git clone https://github.com/yoyo-nb/Thin-Plate-Spline-Motion-Model")
|
10 |
+
os.chdir("Thin-Plate-Spline-Motion-Model")
|
11 |
+
os.system("mkdir checkpoints")
|
12 |
+
os.system("wget -c https://cloud.tsinghua.edu.cn/f/da8d61d012014b12a9e4/?dl=1 -O checkpoints/vox.pth.tar")
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
title = "# Thin-Plate Spline Motion Model for Image Animation"
|
17 |
+
DESCRIPTION = '''### Gradio demo for <b>Thin-Plate Spline Motion Model for Image Animation</b>, CVPR 2022. <a href='https://arxiv.org/abs/2203.14367'>[Paper]</a><a href='https://github.com/yoyo-nb/Thin-Plate-Spline-Motion-Model'>[Github Code]</a>
|
18 |
+
|
19 |
+
<img id="overview" alt="overview" src="https://github.com/yoyo-nb/Thin-Plate-Spline-Motion-Model/raw/main/assets/vox.gif" />
|
20 |
+
'''
|
21 |
+
FOOTER = '<img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.glitch.me/badge?page_id=gradio-blocks.dualstylegan" />'
|
22 |
+
|
23 |
+
|
24 |
+
def get_style_image_path(style_name: str) -> str:
|
25 |
+
base_path = 'assets'
|
26 |
+
filenames = {
|
27 |
+
'source': 'source.png',
|
28 |
+
'driving': 'driving.mp4',
|
29 |
+
}
|
30 |
+
return f'{base_path}/{filenames[style_name]}'
|
31 |
+
|
32 |
+
|
33 |
+
def get_style_image_markdown_text(style_name: str) -> str:
|
34 |
+
url = get_style_image_path(style_name)
|
35 |
+
return f'<img id="style-image" src="{url}" alt="style image">'
|
36 |
+
|
37 |
+
|
38 |
+
def update_style_image(style_name: str) -> dict:
|
39 |
+
text = get_style_image_markdown_text(style_name)
|
40 |
+
return gr.Markdown.update(value=text)
|
41 |
+
|
42 |
+
|
43 |
+
def set_example_image(example: list) -> dict:
|
44 |
+
return gr.Image.update(value=example[0])
|
45 |
+
|
46 |
+
def set_example_video(example: list) -> dict:
|
47 |
+
return gr.Video.update(value=example[0])
|
48 |
+
|
49 |
+
def inference(img,vid):
|
50 |
+
if not os.path.exists('temp'):
|
51 |
+
os.system('mkdir temp')
|
52 |
+
|
53 |
+
img.save("temp/image.jpg", "JPEG")
|
54 |
+
os.system(f"python demo.py --config config/vox-256.yaml --checkpoint ./checkpoints/vox.pth.tar --source_image 'temp/image.jpg' --driving_video {vid} --result_video './temp/result.mp4' --cpu")
|
55 |
+
return './temp/result.mp4'
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
def main():
|
60 |
+
with gr.Blocks(theme="huggingface", css='style.css') as demo:
|
61 |
+
gr.Markdown(title)
|
62 |
+
gr.Markdown(DESCRIPTION)
|
63 |
+
|
64 |
+
with gr.Box():
|
65 |
+
gr.Markdown('''## Step 1 (Provide Input Face Image)
|
66 |
+
- Drop an image containing a face to the **Input Image**.
|
67 |
+
- If there are multiple faces in the image, use Edit button in the upper right corner and crop the input image beforehand.
|
68 |
+
''')
|
69 |
+
with gr.Row():
|
70 |
+
with gr.Column():
|
71 |
+
with gr.Row():
|
72 |
+
input_image = gr.Image(label='Input Image',
|
73 |
+
type="pil")
|
74 |
+
|
75 |
+
with gr.Row():
|
76 |
+
paths = sorted(pathlib.Path('assets').glob('*.png'))
|
77 |
+
example_images = gr.Dataset(components=[input_image],
|
78 |
+
samples=[[path.as_posix()]
|
79 |
+
for path in paths])
|
80 |
+
|
81 |
+
with gr.Box():
|
82 |
+
gr.Markdown('''## Step 2 (Select Driving Video)
|
83 |
+
- Select **Style Driving Video for the face image animation**.
|
84 |
+
''')
|
85 |
+
with gr.Row():
|
86 |
+
with gr.Column():
|
87 |
+
with gr.Row():
|
88 |
+
driving_video = gr.Video(label='Driving Video',
|
89 |
+
format="mp4")
|
90 |
+
|
91 |
+
with gr.Row():
|
92 |
+
paths = sorted(pathlib.Path('assets').glob('*.mp4'))
|
93 |
+
example_video = gr.Dataset(components=[driving_video],
|
94 |
+
samples=[[path.as_posix()]
|
95 |
+
for path in paths])
|
96 |
+
|
97 |
+
with gr.Box():
|
98 |
+
gr.Markdown('''## Step 3 (Generate Animated Image based on the Video)
|
99 |
+
- Hit the **Generate** button.
|
100 |
+
''')
|
101 |
+
with gr.Row():
|
102 |
+
with gr.Column():
|
103 |
+
with gr.Row():
|
104 |
+
generate_button = gr.Button('Generate')
|
105 |
+
|
106 |
+
with gr.Column():
|
107 |
+
result = gr.Video(type="file", label="Output")
|
108 |
+
gr.Markdown(FOOTER)
|
109 |
+
generate_button.click(fn=inference,
|
110 |
+
inputs=[
|
111 |
+
input_image,
|
112 |
+
driving_video
|
113 |
+
],
|
114 |
+
outputs=result)
|
115 |
+
example_images.click(fn=set_example_image,
|
116 |
+
inputs=example_images,
|
117 |
+
outputs=example_images.components)
|
118 |
+
example_video.click(fn=set_example_video,
|
119 |
+
inputs=example_video,
|
120 |
+
outputs=example_video.components)
|
121 |
+
|
122 |
+
demo.launch(
|
123 |
+
share=True,
|
124 |
+
debug=True
|
125 |
+
)
|
126 |
+
|
127 |
+
|
128 |
+
if __name__ == '__main__':
|
129 |
+
main()
|