File size: 5,198 Bytes
df11144
 
 
 
 
 
8b55d5e
df11144
2b8f81c
df11144
8b55d5e
7668197
df11144
 
 
 
 
 
439d8a3
 
 
df11144
 
 
 
 
2b8f81c
df11144
 
 
 
 
439d8a3
 
 
a25e0f7
5954cb4
1139cec
5e25e4d
3024d67
439d8a3
 
 
a25e0f7
439d8a3
df11144
2b8f81c
df11144
38c59e6
df11144
439d8a3
df11144
5e25e4d
 
a477e6a
df11144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
439d8a3
df11144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import json
import csv
import io
import requests
import html  # For escaping HTML characters
from bs4 import BeautifulSoup
from openai import OpenAI 

# Initialize OpenAI API with Nvidia's llama model
client = OpenAI(
    base_url="https://integrate.api.nvidia.com/v1",
    api_key="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"
)

def clean_test_case_output(text):
    """
    Cleans the output to handle HTML characters and unwanted tags.
    """
    text = html.unescape(text)  # Unescape HTML entities
    soup = BeautifulSoup(text, 'html.parser')  # Use BeautifulSoup to handle HTML tags
    cleaned_text = soup.get_text(separator="\n").strip()  # Remove tags and handle newlines
    return cleaned_text

def generate_testcases(user_story):
    """
    Generates advanced QA test cases based on a provided user story by interacting 
    with Nvidia's llama model API. The prompt is refined for clarity, 
    and the output is processed for better quality.
    
    :param user_story: A string representing the user story for which to generate test cases.
    :return: A list of test cases in the form of dictionaries.
    """

    # Few-shot learning examples to guide the model
    few_shot_examples = """

    "App we perform testing is Tech360 iOS App"
    "Generate as many as testcases possible minimum 6 ,maximum it can be anything"
    "Understand the story thoroughly"
    "If it's a DropBury or ODAC Portal User Story, then we test in ODAC Portal"
    """

    # Combine the few-shot examples with the user story for the model to process
    prompt = few_shot_examples + f"\nUser Story: {user_story}\n" 

    try:
        # Call the Nvidia llama API with the refined prompt
        completion = client.chat.completions.create(
            model="meta/llama-3.1-405b-instruct",  # Using llama3.1 405b model
            messages=[
                {"role": "user", "content": prompt}
            ],
            temperature=0.07,  # Further lowering temperature for precise and deterministic output
            top_p=0.5,  # Prioritize high-probability tokens even more
            max_tokens=4096,  # Increase max tokens to allow longer content
            stream=True  # Streaming the response for faster retrieval
        )

        # Initialize an empty string to accumulate the response
        test_cases_text = ""
        
        # Accumulate the response from the streaming chunks
        for chunk in completion:
            if chunk.choices[0].delta.content is not None:
                test_cases_text += chunk.choices[0].delta.content


        # Ensure the entire response is captured before cleaning
        if test_cases_text.strip() == "":
            return [{"test_case": "No test cases generated or output was empty."}]
        
        # Clean the output by unescaping HTML entities and replacing <br> tags
        test_cases_text = clean_test_case_output(test_cases_text)

        try:
            # Try to parse the output as JSON, assuming the model returns structured test cases
            test_cases = json.loads(test_cases_text)
            if isinstance(test_cases, list):
                return test_cases  # Return structured test cases

            else:
                return [{"test_case": test_cases_text}]  # Return as a list with the text wrapped in a dict

        except json.JSONDecodeError:
            # Fallback: return the raw text if JSON parsing fails
            return [{"test_case": test_cases_text}]
    
    except requests.exceptions.RequestException as e:
        print(f"API request failed: {str(e)}")
        return []

# Add options for multiple test case formats
def export_test_cases(test_cases, format='json'):
    if not test_cases:
        return "No test cases to export."

    # Convert test cases (which are currently strings) into a structured format for CSV
    structured_test_cases = [{'Test Case': case} for case in test_cases]

    if format == 'json':
        # Improve JSON export to be line-by-line formatted
        return json.dumps(test_cases, indent=4, separators=(',', ': '))  # More readable format
    elif format == 'csv':
        if isinstance(test_cases, list) and isinstance(test_cases[0], dict):
            output = io.StringIO()
            csv_writer = csv.DictWriter(output, fieldnames=test_cases[0].keys(), quoting=csv.QUOTE_ALL)
            csv_writer.writeheader()
            csv_writer.writerows(test_cases)
            return output.getvalue()
        else:
            raise ValueError("Test cases must be a list of dictionaries for CSV export.")

# 2. Save test cases as a downloadable file
def save_test_cases_as_file(test_cases, format='json'):
    if not test_cases:
        return "No test cases to save."

    if format == 'json':
        with open('test_cases.json', 'w') as f:
            json.dump(test_cases, f)
    elif format == 'csv':
        with open('test_cases.csv', 'w', newline='') as file:
            dict_writer = csv.DictWriter(file, fieldnames=test_cases[0].keys())
            dict_writer.writeheader()
            dict_writer.writerows(test_cases)
    else:
        return f"Unsupported format: {format}"
    return f'{format} file saved'