ArvindSelvaraj's picture
Update backend.py
0a784fa verified
raw
history blame
6.19 kB
import json
import io
import requests
import html # For escaping HTML characters
from bs4 import BeautifulSoup
import pandas as pd
from openpyxl import Workbook
from openpyxl.styles import Alignment, Font
from openai import OpenAI
# Initialize OpenAI API with Nvidia's Llama model
client = OpenAI(
base_url="https://integrate.api.nvidia.com/v1",
api_key="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"
)
def clean_test_case_output(text):
"""
Cleans the output to handle HTML characters and unwanted tags.
"""
text = html.unescape(text) # Unescape HTML entities
soup = BeautifulSoup(text, 'html.parser') # Use BeautifulSoup to handle HTML tags
cleaned_text = soup.get_text(separator="\n").strip() # Remove tags and handle newlines
return cleaned_text
def generate_testcases(user_story):
"""
Generates advanced QA test cases based on a provided user story by interacting
with Nvidia's llama model API.
:param user_story: A string representing the user story for which to generate test cases.
:return: A list of dictionaries with test case information.
"""
few_shot_examples = """
"if its not a DropBury or ODAC Portal User Story, then we perform testing in Tech360 iOS App"
"Generate as many as testcases possible minimum 6 ,maximum it can be anything"
"Understand the story thoroughly"
"If it's a DropBury or ODAC Portal User Story, then we perform testing in ODAC Portal"
Please generate test cases in the following format:
Test Case 1:
Preconditions: [Describe any preconditions here]
Steps: [List the steps required to perform the test]
Expected Result: [Describe the expected result of the test]
Test Case 2:
Preconditions: [Describe any preconditions here]
Steps: [List the steps required to perform the test]
Expected Result: [Describe the expected result of the test]
"""
prompt = few_shot_examples + f"\nUser Story: {user_story}\n"
try:
completion = client.chat.completions.create(
model="meta/llama-3.1-405b-instruct",
messages=[
{"role": "user", "content": prompt}
],
temperature=0.2,
top_p=0.5,
max_tokens=4096,
stream=True
)
test_cases_text = ""
for chunk in completion:
if chunk.choices[0].delta.content is not None:
test_cases_text += chunk.choices[0].delta.content
if test_cases_text.strip() == "":
return [{"test_case": "No test cases generated or output was empty."}]
test_cases_text = clean_test_case_output(test_cases_text)
try:
test_cases = json.loads(test_cases_text)
if isinstance(test_cases, list):
return test_cases
else:
return [{"test_case": test_cases_text}]
except json.JSONDecodeError:
# If JSON decoding fails, attempt to parse manually
return parse_test_cases(test_cases_text)
except requests.exceptions.RequestException as e:
print(f"API request failed: {str(e)}")
return []
def parse_test_cases(raw_text):
"""
Parse raw text output into structured test cases.
:param raw_text: Raw text returned from the model.
:return: List of dictionaries with structured test cases.
"""
test_cases = []
case = {
"Test Case": "",
"Preconditions": "N/A",
"Steps": "N/A",
"Expected Result": "N/A"
}
lines = raw_text.split("\n")
for line in lines:
if line.startswith("Test Case"):
if case["Test Case"]:
test_cases.append(case) # Save the previous test case
case = {"Test Case": "", "Preconditions": "N/A", "Steps": "N/A", "Expected Result": "N/A"}
case["Test Case"] = line.replace("Test Case:", "").strip()
elif "Preconditions" in line:
case["Preconditions"] = line.replace("Preconditions:", "").strip() or "N/A"
elif "Steps" in line:
case["Steps"] = line.replace("Steps:", "").strip() or "N/A"
elif "Expected Result" in line:
case["Expected Result"] = line.replace("Expected Result:", "").strip() or "N/A"
if case["Test Case"]: # Add the last case
test_cases.append(case)
return test_cases
def export_test_cases(test_cases):
"""
Exports the test cases to an Excel file with specific columns:
- Test Case
- Preconditions
- Steps
- Expected Result
:param test_cases: A list of test case dictionaries.
:return: Bytes of the Excel file.
"""
if not test_cases:
return "No test cases to export."
formatted_test_cases = []
for case in test_cases:
# Ensure each field has a default value if missing
test_case = case.get('Test Case', 'N/A')
preconditions = case.get('Preconditions', 'N/A')
steps = case.get('Steps', 'N/A')
expected_result = case.get('Expected Result', 'N/A')
formatted_test_cases.append({
'Test Case': test_case,
'Preconditions': preconditions,
'Steps': steps,
'Expected Result': expected_result
})
wb = Workbook()
ws = wb.active
ws.title = "Test Cases"
# Add headers with formatting
headers = ["Test Case", "Preconditions", "Steps", "Expected Result"]
ws.append(headers)
for cell in ws[1]:
cell.font = Font(bold=True)
cell.alignment = Alignment(horizontal="center", vertical="center")
# Add the test case data
for case in formatted_test_cases:
ws.append([case["Test Case"], case["Preconditions"], case["Steps"], case["Expected Result"]])
# Adjust column widths for neatness
ws.column_dimensions['A'].width = 50 # Test Case
ws.column_dimensions['B'].width = 30 # Preconditions
ws.column_dimensions['C'].width = 50 # Steps
ws.column_dimensions['D'].width = 50 # Expected Result
output = io.BytesIO()
wb.save(output)
output.seek(0)
return output.getvalue()