ArvindSelvaraj
commited on
Commit
•
2599152
1
Parent(s):
1396f9a
Update backend.py
Browse files- backend.py +76 -53
backend.py
CHANGED
@@ -3,7 +3,9 @@ import io
|
|
3 |
import requests
|
4 |
import html # For escaping HTML characters
|
5 |
from bs4 import BeautifulSoup
|
6 |
-
import pandas as pd
|
|
|
|
|
7 |
from openai import OpenAI
|
8 |
|
9 |
# Initialize OpenAI API with Nvidia's Llama model
|
@@ -24,26 +26,19 @@ def clean_test_case_output(text):
|
|
24 |
def generate_testcases(user_story):
|
25 |
"""
|
26 |
Generates advanced QA test cases based on a provided user story by interacting
|
27 |
-
with Nvidia's llama model API.
|
28 |
-
and the output is processed for better quality.
|
29 |
|
30 |
:param user_story: A string representing the user story for which to generate test cases.
|
31 |
-
:return: A list of
|
32 |
"""
|
33 |
-
|
34 |
-
# Few-shot learning examples to guide the model
|
35 |
few_shot_examples = """
|
36 |
-
"
|
37 |
-
"
|
38 |
-
"Understand the story thoroughly"
|
39 |
-
"If it's a DropBury or ODAC Portal User Story, then we perform testing in ODAC Portal"
|
40 |
"""
|
41 |
|
42 |
-
# Combine the few-shot examples with the user story for the model to process
|
43 |
prompt = few_shot_examples + f"\nUser Story: {user_story}\n"
|
44 |
|
45 |
try:
|
46 |
-
# Call the Nvidia llama API with the refined prompt
|
47 |
completion = client.chat.completions.create(
|
48 |
model="meta/llama-3.1-405b-instruct",
|
49 |
messages=[
|
@@ -55,37 +50,65 @@ def generate_testcases(user_story):
|
|
55 |
stream=True
|
56 |
)
|
57 |
|
58 |
-
# Initialize an empty string to accumulate the response
|
59 |
test_cases_text = ""
|
60 |
|
61 |
-
# Accumulate the response from the streaming chunks
|
62 |
for chunk in completion:
|
63 |
if chunk.choices[0].delta.content is not None:
|
64 |
test_cases_text += chunk.choices[0].delta.content
|
65 |
|
66 |
-
# Ensure the entire response is captured before cleaning
|
67 |
if test_cases_text.strip() == "":
|
68 |
return [{"test_case": "No test cases generated or output was empty."}]
|
69 |
|
70 |
-
# Clean the output by unescaping HTML entities and replacing <br> tags
|
71 |
test_cases_text = clean_test_case_output(test_cases_text)
|
72 |
|
73 |
try:
|
74 |
-
# Try to parse the output as JSON, assuming the model returns structured test cases
|
75 |
test_cases = json.loads(test_cases_text)
|
76 |
if isinstance(test_cases, list):
|
77 |
-
return test_cases
|
78 |
else:
|
79 |
-
return [{"test_case": test_cases_text}]
|
80 |
-
|
81 |
except json.JSONDecodeError:
|
82 |
-
#
|
83 |
-
return
|
84 |
|
85 |
except requests.exceptions.RequestException as e:
|
86 |
print(f"API request failed: {str(e)}")
|
87 |
return []
|
88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
def export_test_cases(test_cases):
|
90 |
"""
|
91 |
Exports the test cases to an Excel file with specific columns:
|
@@ -94,39 +117,21 @@ def export_test_cases(test_cases):
|
|
94 |
- Steps
|
95 |
- Expected Result
|
96 |
|
97 |
-
:param test_cases: A list of test case dictionaries
|
98 |
:return: Bytes of the Excel file.
|
99 |
"""
|
100 |
if not test_cases:
|
101 |
return "No test cases to export."
|
102 |
|
103 |
-
# Define the structure of the Excel file
|
104 |
formatted_test_cases = []
|
105 |
|
106 |
for case in test_cases:
|
107 |
-
#
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
preconditions = ""
|
114 |
-
steps = ""
|
115 |
-
expected_result = ""
|
116 |
-
|
117 |
-
for line in lines:
|
118 |
-
if "Preconditions" in line:
|
119 |
-
preconditions = line.replace("Preconditions:", "").strip()
|
120 |
-
elif "Steps" in line:
|
121 |
-
steps = line.replace("Steps:", "").strip()
|
122 |
-
elif "Expected Result" in line:
|
123 |
-
expected_result = line.replace("Expected Result:", "").strip()
|
124 |
-
else:
|
125 |
-
# Default to putting the first part as the "Test Case"
|
126 |
-
if not test_case:
|
127 |
-
test_case = line.strip()
|
128 |
-
|
129 |
-
# Append to formatted test cases list
|
130 |
formatted_test_cases.append({
|
131 |
'Test Case': test_case,
|
132 |
'Preconditions': preconditions,
|
@@ -134,12 +139,30 @@ def export_test_cases(test_cases):
|
|
134 |
'Expected Result': expected_result
|
135 |
})
|
136 |
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
return output.getvalue()
|
|
|
3 |
import requests
|
4 |
import html # For escaping HTML characters
|
5 |
from bs4 import BeautifulSoup
|
6 |
+
import pandas as pd
|
7 |
+
from openpyxl import Workbook
|
8 |
+
from openpyxl.styles import Alignment, Font
|
9 |
from openai import OpenAI
|
10 |
|
11 |
# Initialize OpenAI API with Nvidia's Llama model
|
|
|
26 |
def generate_testcases(user_story):
|
27 |
"""
|
28 |
Generates advanced QA test cases based on a provided user story by interacting
|
29 |
+
with Nvidia's llama model API.
|
|
|
30 |
|
31 |
:param user_story: A string representing the user story for which to generate test cases.
|
32 |
+
:return: A list of dictionaries with test case information.
|
33 |
"""
|
|
|
|
|
34 |
few_shot_examples = """
|
35 |
+
"Generate as many test cases as possible. Minimum 6, but can be more."
|
36 |
+
"Structure each test case with Test Case, Preconditions, Steps, and Expected Result."
|
|
|
|
|
37 |
"""
|
38 |
|
|
|
39 |
prompt = few_shot_examples + f"\nUser Story: {user_story}\n"
|
40 |
|
41 |
try:
|
|
|
42 |
completion = client.chat.completions.create(
|
43 |
model="meta/llama-3.1-405b-instruct",
|
44 |
messages=[
|
|
|
50 |
stream=True
|
51 |
)
|
52 |
|
|
|
53 |
test_cases_text = ""
|
54 |
|
|
|
55 |
for chunk in completion:
|
56 |
if chunk.choices[0].delta.content is not None:
|
57 |
test_cases_text += chunk.choices[0].delta.content
|
58 |
|
|
|
59 |
if test_cases_text.strip() == "":
|
60 |
return [{"test_case": "No test cases generated or output was empty."}]
|
61 |
|
|
|
62 |
test_cases_text = clean_test_case_output(test_cases_text)
|
63 |
|
64 |
try:
|
|
|
65 |
test_cases = json.loads(test_cases_text)
|
66 |
if isinstance(test_cases, list):
|
67 |
+
return test_cases
|
68 |
else:
|
69 |
+
return [{"test_case": test_cases_text}]
|
|
|
70 |
except json.JSONDecodeError:
|
71 |
+
# If JSON decoding fails, attempt to parse manually
|
72 |
+
return parse_test_cases(test_cases_text)
|
73 |
|
74 |
except requests.exceptions.RequestException as e:
|
75 |
print(f"API request failed: {str(e)}")
|
76 |
return []
|
77 |
|
78 |
+
def parse_test_cases(raw_text):
|
79 |
+
"""
|
80 |
+
Parse raw text output into structured test cases.
|
81 |
+
|
82 |
+
:param raw_text: Raw text returned from the model.
|
83 |
+
:return: List of dictionaries with structured test cases.
|
84 |
+
"""
|
85 |
+
test_cases = []
|
86 |
+
case = {
|
87 |
+
"Test Case": "",
|
88 |
+
"Preconditions": "N/A",
|
89 |
+
"Steps": "N/A",
|
90 |
+
"Expected Result": "N/A"
|
91 |
+
}
|
92 |
+
|
93 |
+
lines = raw_text.split("\n")
|
94 |
+
for line in lines:
|
95 |
+
if line.startswith("Test Case"):
|
96 |
+
if case["Test Case"]:
|
97 |
+
test_cases.append(case) # Save the previous test case
|
98 |
+
case = {"Test Case": "", "Preconditions": "N/A", "Steps": "N/A", "Expected Result": "N/A"}
|
99 |
+
case["Test Case"] = line.replace("Test Case:", "").strip()
|
100 |
+
elif "Preconditions" in line:
|
101 |
+
case["Preconditions"] = line.replace("Preconditions:", "").strip() or "N/A"
|
102 |
+
elif "Steps" in line:
|
103 |
+
case["Steps"] = line.replace("Steps:", "").strip() or "N/A"
|
104 |
+
elif "Expected Result" in line:
|
105 |
+
case["Expected Result"] = line.replace("Expected Result:", "").strip() or "N/A"
|
106 |
+
|
107 |
+
if case["Test Case"]: # Add the last case
|
108 |
+
test_cases.append(case)
|
109 |
+
|
110 |
+
return test_cases
|
111 |
+
|
112 |
def export_test_cases(test_cases):
|
113 |
"""
|
114 |
Exports the test cases to an Excel file with specific columns:
|
|
|
117 |
- Steps
|
118 |
- Expected Result
|
119 |
|
120 |
+
:param test_cases: A list of test case dictionaries.
|
121 |
:return: Bytes of the Excel file.
|
122 |
"""
|
123 |
if not test_cases:
|
124 |
return "No test cases to export."
|
125 |
|
|
|
126 |
formatted_test_cases = []
|
127 |
|
128 |
for case in test_cases:
|
129 |
+
# Ensure each field has a default value if missing
|
130 |
+
test_case = case.get('Test Case', 'N/A')
|
131 |
+
preconditions = case.get('Preconditions', 'N/A')
|
132 |
+
steps = case.get('Steps', 'N/A')
|
133 |
+
expected_result = case.get('Expected Result', 'N/A')
|
134 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
formatted_test_cases.append({
|
136 |
'Test Case': test_case,
|
137 |
'Preconditions': preconditions,
|
|
|
139 |
'Expected Result': expected_result
|
140 |
})
|
141 |
|
142 |
+
wb = Workbook()
|
143 |
+
ws = wb.active
|
144 |
+
ws.title = "Test Cases"
|
145 |
+
|
146 |
+
# Add headers with formatting
|
147 |
+
headers = ["Test Case", "Preconditions", "Steps", "Expected Result"]
|
148 |
+
ws.append(headers)
|
149 |
|
150 |
+
for cell in ws[1]:
|
151 |
+
cell.font = Font(bold=True)
|
152 |
+
cell.alignment = Alignment(horizontal="center", vertical="center")
|
153 |
+
|
154 |
+
# Add the test case data
|
155 |
+
for case in formatted_test_cases:
|
156 |
+
ws.append([case["Test Case"], case["Preconditions"], case["Steps"], case["Expected Result"]])
|
157 |
|
158 |
+
# Adjust column widths for neatness
|
159 |
+
ws.column_dimensions['A'].width = 50 # Test Case
|
160 |
+
ws.column_dimensions['B'].width = 30 # Preconditions
|
161 |
+
ws.column_dimensions['C'].width = 50 # Steps
|
162 |
+
ws.column_dimensions['D'].width = 50 # Expected Result
|
163 |
+
|
164 |
+
output = io.BytesIO()
|
165 |
+
wb.save(output)
|
166 |
+
output.seek(0)
|
167 |
+
|
168 |
return output.getvalue()
|