File size: 9,904 Bytes
810eec1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
917c9b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
810eec1
917c9b5
 
 
810eec1
 
6b7695c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
810eec1
 
 
5c1cf77
6b7695c
155ab36
 
6b7695c
 
 
 
 
5c1cf77
6b7695c
810eec1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b38cfe
810eec1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import argparse

import numpy as np
import torch
from diffusers import AutoencoderKL, DDPMScheduler, LCMScheduler, UNet2DConditionModel
from PIL import Image
from torchvision import transforms
from tqdm import tqdm
from transformers import AutoModelForImageSegmentation

from mvadapter.pipelines.pipeline_mvadapter_i2mv_sdxl import MVAdapterI2MVSDXLPipeline
from mvadapter.schedulers.scheduling_shift_snr import ShiftSNRScheduler
from mvadapter.utils import (
    get_orthogonal_camera,
    get_plucker_embeds_from_cameras_ortho,
    make_image_grid,
)


def prepare_pipeline(
    base_model,
    vae_model,
    unet_model,
    lora_model,
    adapter_path,
    scheduler,
    num_views,
    device,
    dtype,
):
    # Load vae and unet if provided
    pipe_kwargs = {}
    if vae_model is not None:
        pipe_kwargs["vae"] = AutoencoderKL.from_pretrained(vae_model)
    if unet_model is not None:
        pipe_kwargs["unet"] = UNet2DConditionModel.from_pretrained(unet_model)

    # Prepare pipeline
    pipe: MVAdapterI2MVSDXLPipeline
    pipe = MVAdapterI2MVSDXLPipeline.from_pretrained(base_model, **pipe_kwargs)

    # Load scheduler if provided
    scheduler_class = None
    if scheduler == "ddpm":
        scheduler_class = DDPMScheduler
    elif scheduler == "lcm":
        scheduler_class = LCMScheduler

    pipe.scheduler = ShiftSNRScheduler.from_scheduler(
        pipe.scheduler,
        shift_mode="interpolated",
        shift_scale=8.0,
        scheduler_class=scheduler_class,
    )
    pipe.init_custom_adapter(num_views=num_views)
    pipe.load_custom_adapter(
        adapter_path, weight_name="mvadapter_i2mv_sdxl.safetensors"
    )

    pipe.to(device=device, dtype=dtype)
    pipe.cond_encoder.to(device=device, dtype=dtype)

    # load lora if provided
    if lora_model is not None:
        model_, name_ = lora_model.rsplit("/", 1)
        pipe.load_lora_weights(model_, weight_name=name_)

    # vae slicing for lower memory usage
    pipe.enable_vae_slicing()

    return pipe

def remove_bg(image: Image.Image, net, transform, device, mask: Image.Image = None):
    """
    Applies a pre-existing mask to an image to make the background transparent.

    Args:
        image (PIL.Image.Image): The input image.
        net: Pre-trained neural network (not used but kept for compatibility).
        transform: Image transformation object (not used but kept for compatibility).
        device: Device used for inference (not used but kept for compatibility).
        mask (PIL.Image.Image, optional): The mask to use. Should be the same size
                                 as the input image, with values between 0 and 255 (or 0-1).
                                 If None, will return image with no changes.

    Returns:
        PIL.Image.Image: The modified image with transparent background.
    """
    if mask is None:
      return image
    
    image_size = image.size
    if mask.size != image_size:
        mask = mask.resize(image_size) # Resizing the mask if it is not the same size as image
    
    image.putalpha(mask)
    return image


def remove_bg(image, net, transform, device):
    image_size = image.size
    input_images = transform(image).unsqueeze(0).to(device)
    with torch.no_grad():
        preds = net(input_images)[-1].sigmoid().cpu()
    pred = preds[0].squeeze()
    pred_pil = transforms.ToPILImage()(pred)
    mask = pred_pil.resize(image_size)
    image.putalpha(mask)
    return image





def preprocess_image(image: Image.Image, height, width):
    
    alpha = image[..., 3] > 0
    # alpha = image

    #if image.mode in ("RGBA", "LA"):
    #    image = np.array(image)
    #    alpha = image[..., 3]  # Extract the alpha channel
    #elif image.mode in ("RGB"):
    #    image = np.array(image)
        # Create default alpha for non-alpha images
    #    alpha = np.ones(image[..., 0].shape, dtype=np.uint8) * 255 # Create
    H, W = alpha.shape
    # get the bounding box of alpha
    y, x = np.where(alpha)
    y0, y1 = max(y.min() - 1, 0), min(y.max() + 1, H)
    x0, x1 = max(x.min() - 1, 0), min(x.max() + 1, W)
    image_center = image[y0:y1, x0:x1]
    # resize the longer side to H * 0.9
    H, W, _ = image_center.shape
    if H > W:
        W = int(W * (height * 0.9) / H)
        H = int(height * 0.9)
    else:
        H = int(H * (width * 0.9) / W)
        W = int(width * 0.9)
    image_center = np.array(Image.fromarray(image_center).resize((W, H)))
    # pad to H, W
    start_h = (height - H) // 2
    start_w = (width - W) // 2
    image = np.zeros((height, width, 4), dtype=np.uint8)
    image[start_h : start_h + H, start_w : start_w + W] = image_center
    image = image.astype(np.float32) / 255.0
    image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
    image = (image * 255).clip(0, 255).astype(np.uint8)
    image = Image.fromarray(image)

    return image


def run_pipeline(
    pipe,
    num_views,
    text,
    image,
    height,
    width,
    num_inference_steps,
    guidance_scale,
    seed,
    remove_bg_fn=None,
    reference_conditioning_scale=1.0,
    negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast",
    lora_scale=1.0,
    device="cuda",
):
    # Prepare cameras
    cameras = get_orthogonal_camera(
        elevation_deg=[0, 0, 0, 0, 0, 0],
        distance=[1.8] * num_views,
        left=-0.55,
        right=0.55,
        bottom=-0.55,
        top=0.55,
        azimuth_deg=[x - 90 for x in [0, 45, 90, 180, 270, 315]],
        device=device,
    )

    plucker_embeds = get_plucker_embeds_from_cameras_ortho(
        cameras.c2w, [1.1] * num_views, width
    )
    control_images = ((plucker_embeds + 1.0) / 2.0).clamp(0, 1)

    # Prepare image
    reference_image = Image.open(image) if isinstance(image, str) else image
    if remove_bg_fn is not None:
        reference_image = remove_bg_fn(reference_image)
        reference_image = preprocess_image(reference_image, height, width)
    elif reference_image.mode == "RGBA":
        reference_image = preprocess_image(reference_image, height, width)

    pipe_kwargs = {}
    if seed != -1 and isinstance(seed, int):
        pipe_kwargs["generator"] = torch.Generator(device=device).manual_seed(seed)

    images = pipe(
        text,
        height=height,
        width=width,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        num_images_per_prompt=num_views,
        control_image=control_images,
        control_conditioning_scale=1.0,
        reference_image=reference_image,
        reference_conditioning_scale=reference_conditioning_scale,
        negative_prompt=negative_prompt,
        cross_attention_kwargs={"scale": lora_scale},
        **pipe_kwargs,
    ).images

    return images, reference_image


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    # Models
    parser.add_argument(
        "--base_model", type=str, default="stabilityai/stable-diffusion-xl-base-1.0"
    )
    parser.add_argument(
        "--vae_model", type=str, default="madebyollin/sdxl-vae-fp16-fix"
    )
    parser.add_argument("--unet_model", type=str, default=None)
    parser.add_argument("--scheduler", type=str, default=None)
    parser.add_argument("--lora_model", type=str, default=None)
    parser.add_argument("--adapter_path", type=str, default="huanngzh/mv-adapter")
    parser.add_argument("--num_views", type=int, default=6)
    # Device
    parser.add_argument("--device", type=str, default="cuda")
    # Inference
    parser.add_argument("--image", type=str, required=True)
    parser.add_argument("--text", type=str, default="high quality")
    parser.add_argument("--num_inference_steps", type=int, default=50)
    parser.add_argument("--guidance_scale", type=float, default=3.0)
    parser.add_argument("--seed", type=int, default=-1)
    parser.add_argument("--lora_scale", type=float, default=1.0)
    parser.add_argument("--reference_conditioning_scale", type=float, default=1.0)
    parser.add_argument(
        "--negative_prompt",
        type=str,
        default="watermark, ugly, deformed, noisy, blurry, low contrast",
    )
    parser.add_argument("--output", type=str, default="output.png")
    # Extra
    parser.add_argument("--remove_bg", action="store_true", help="Remove background")
    args = parser.parse_args()

    pipe = prepare_pipeline(
        base_model=args.base_model,
        vae_model=args.vae_model,
        unet_model=args.unet_model,
        lora_model=args.lora_model,
        adapter_path=args.adapter_path,
        scheduler=args.scheduler,
        num_views=args.num_views,
        device=args.device,
        dtype=torch.float16,
    )

    if args.remove_bg:
        birefnet = AutoModelForImageSegmentation.from_pretrained(
            "ZhengPeng7/BiRefNet", trust_remote_code=True
        )
        birefnet.to(args.device)
        transform_image = transforms.Compose(
            [
                transforms.Resize((1024, 1024)),
                transforms.ToTensor(),
                transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
            ]
        )
        remove_bg_fn = lambda x: remove_bg(x, birefnet, transform_image, args.device)
    else:
        remove_bg_fn = None

    images, reference_image = run_pipeline(
        pipe,
        num_views=args.num_views,
        text=args.text,
        image=args.image,
        height=768,
        width=768,
        num_inference_steps=args.num_inference_steps,
        guidance_scale=args.guidance_scale,
        seed=args.seed,
        lora_scale=args.lora_scale,
        reference_conditioning_scale=args.reference_conditioning_scale,
        negative_prompt=args.negative_prompt,
        device=args.device,
        remove_bg_fn=remove_bg_fn,
    )
    make_image_grid(images, rows=1).save(args.output)
    reference_image.save(args.output.rsplit(".", 1)[0] + "_reference.png")