Spaces:
Runtime error
Runtime error
File size: 50,527 Bytes
5ffee47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 |
import spaces
import os
import math
import gradio as gr
import numpy as np
import torch
import safetensors.torch as sf
import db_examples
import datetime
from pathlib import Path
from io import BytesIO
from PIL import Image
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline
from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler
from diffusers.models.attention_processor import AttnProcessor2_0
from transformers import CLIPTextModel, CLIPTokenizer
import dds_cloudapi_sdk
from dds_cloudapi_sdk import Config, Client, TextPrompt
from dds_cloudapi_sdk.tasks.dinox import DinoxTask
from enum import Enum
from torch.hub import download_url_to_file
import tempfile
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
import cv2
from typing import Optional
from depth_anything_v2.dpt import DepthAnythingV2
import httpx
client = httpx.Client(timeout=httpx.Timeout(10.0)) # Set timeout to 10 seconds
import supervision as sv
import torch
from PIL import Image
try:
import xformers
import xformers.ops
XFORMERS_AVAILABLE = True
print("xformers is available - Using memory efficient attention")
except ImportError:
XFORMERS_AVAILABLE = False
print("xformers not available - Using default attention")
# Memory optimizations for RTX 2070
torch.backends.cudnn.benchmark = True
if torch.cuda.is_available():
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
# Set a smaller attention slice size for RTX 2070
torch.backends.cuda.max_split_size_mb = 512
device = torch.device('cuda')
else:
device = torch.device('cpu')
# 'stablediffusionapi/realistic-vision-v51'
# 'runwayml/stable-diffusion-v1-5'
sd15_name = 'stablediffusionapi/realistic-vision-v51'
tokenizer = CLIPTokenizer.from_pretrained(sd15_name, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(sd15_name, subfolder="text_encoder")
vae = AutoencoderKL.from_pretrained(sd15_name, subfolder="vae")
unet = UNet2DConditionModel.from_pretrained(sd15_name, subfolder="unet")
# Load model directly
from transformers import AutoModelForImageSegmentation
rmbg = AutoModelForImageSegmentation.from_pretrained("briaai/RMBG-2.0", trust_remote_code=True)
model = DepthAnythingV2(encoder='vits', features=64, out_channels=[48, 96, 192, 384])
model.load_state_dict(torch.load('checkpoints/depth_anything_v2_vits.pth', map_location=device))
model = model.to(device)
model.eval()
# Change UNet
with torch.no_grad():
new_conv_in = torch.nn.Conv2d(8, unet.conv_in.out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding)
new_conv_in.weight.zero_()
new_conv_in.weight[:, :4, :, :].copy_(unet.conv_in.weight)
new_conv_in.bias = unet.conv_in.bias
unet.conv_in = new_conv_in
unet_original_forward = unet.forward
def enable_efficient_attention():
if XFORMERS_AVAILABLE:
try:
# RTX 2070 specific settings
unet.set_use_memory_efficient_attention_xformers(True)
vae.set_use_memory_efficient_attention_xformers(True)
print("Enabled xformers memory efficient attention")
except Exception as e:
print(f"Xformers error: {e}")
print("Falling back to sliced attention")
# Use sliced attention for RTX 2070
unet.set_attention_slice_size(4)
vae.set_attention_slice_size(4)
unet.set_attn_processor(AttnProcessor2_0())
vae.set_attn_processor(AttnProcessor2_0())
else:
# Fallback for when xformers is not available
print("Using sliced attention")
unet.set_attention_slice_size(4)
vae.set_attention_slice_size(4)
unet.set_attn_processor(AttnProcessor2_0())
vae.set_attn_processor(AttnProcessor2_0())
# Add memory clearing function
def clear_memory():
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
# Enable efficient attention
enable_efficient_attention()
def hooked_unet_forward(sample, timestep, encoder_hidden_states, **kwargs):
c_concat = kwargs['cross_attention_kwargs']['concat_conds'].to(sample)
c_concat = torch.cat([c_concat] * (sample.shape[0] // c_concat.shape[0]), dim=0)
new_sample = torch.cat([sample, c_concat], dim=1)
kwargs['cross_attention_kwargs'] = {}
return unet_original_forward(new_sample, timestep, encoder_hidden_states, **kwargs)
unet.forward = hooked_unet_forward
# Load
# Model paths
model_path = './models/iclight_sd15_fc.safetensors'
model_path2 = './checkpoints/depth_anything_v2_vits.pth'
model_path3 = './checkpoints/sam2_hiera_large.pt'
model_path4 = './checkpoints/config.json'
model_path5 = './checkpoints/preprocessor_config.json'
model_path6 = './configs/sam2_hiera_l.yaml'
model_path7 = './mvadapter_i2mv_sdxl.safetensors'
# Base URL for the repository
BASE_URL = 'https://huggingface.co/Ashoka74/Placement/resolve/main/'
# Model URLs
model_urls = {
model_path: 'iclight_sd15_fc.safetensors',
model_path2: 'depth_anything_v2_vits.pth',
model_path3: 'sam2_hiera_large.pt',
model_path4: 'config.json',
model_path5: 'preprocessor_config.json',
model_path6: 'sam2_hiera_l.yaml',
model_path7: 'mvadapter_i2mv_sdxl.safetensors'
}
# Ensure directories exist
def ensure_directories():
for path in model_urls.keys():
os.makedirs(os.path.dirname(path), exist_ok=True)
# Download models
def download_models():
for local_path, filename in model_urls.items():
if not os.path.exists(local_path):
try:
url = f"{BASE_URL}{filename}"
print(f"Downloading {filename}")
download_url_to_file(url, local_path)
print(f"Successfully downloaded {filename}")
except Exception as e:
print(f"Error downloading {filename}: {e}")
ensure_directories()
download_models()
sd_offset = sf.load_file(model_path)
sd_origin = unet.state_dict()
keys = sd_origin.keys()
sd_merged = {k: sd_origin[k] + sd_offset[k] for k in sd_origin.keys()}
unet.load_state_dict(sd_merged, strict=True)
del sd_offset, sd_origin, sd_merged, keys
# Device
# device = torch.device('cuda')
# text_encoder = text_encoder.to(device=device, dtype=torch.float16)
# vae = vae.to(device=device, dtype=torch.bfloat16)
# unet = unet.to(device=device, dtype=torch.float16)
# rmbg = rmbg.to(device=device, dtype=torch.float32)
# Device and dtype setup
device = torch.device('cuda')
dtype = torch.float16 # RTX 2070 works well with float16
# Memory optimizations for RTX 2070
torch.backends.cudnn.benchmark = True
if torch.cuda.is_available():
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
# Set a very small attention slice size for RTX 2070 to avoid OOM
torch.backends.cuda.max_split_size_mb = 128
# Move models to device with consistent dtype
text_encoder = text_encoder.to(device=device, dtype=dtype)
vae = vae.to(device=device, dtype=dtype) # Changed from bfloat16 to float16
unet = unet.to(device=device, dtype=dtype)
rmbg = rmbg.to(device=device, dtype=torch.float32) # Keep this as float32
ddim_scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
)
euler_a_scheduler = EulerAncestralDiscreteScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
steps_offset=1
)
dpmpp_2m_sde_karras_scheduler = DPMSolverMultistepScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
algorithm_type="sde-dpmsolver++",
use_karras_sigmas=True,
steps_offset=1
)
# Pipelines
t2i_pipe = StableDiffusionPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=dpmpp_2m_sde_karras_scheduler,
safety_checker=None,
requires_safety_checker=False,
feature_extractor=None,
image_encoder=None
)
i2i_pipe = StableDiffusionImg2ImgPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=dpmpp_2m_sde_karras_scheduler,
safety_checker=None,
requires_safety_checker=False,
feature_extractor=None,
image_encoder=None
)
@torch.inference_mode()
def encode_prompt_inner(txt: str):
max_length = tokenizer.model_max_length
chunk_length = tokenizer.model_max_length - 2
id_start = tokenizer.bos_token_id
id_end = tokenizer.eos_token_id
id_pad = id_end
def pad(x, p, i):
return x[:i] if len(x) >= i else x + [p] * (i - len(x))
tokens = tokenizer(txt, truncation=False, add_special_tokens=False)["input_ids"]
chunks = [[id_start] + tokens[i: i + chunk_length] + [id_end] for i in range(0, len(tokens), chunk_length)]
chunks = [pad(ck, id_pad, max_length) for ck in chunks]
token_ids = torch.tensor(chunks).to(device=device, dtype=torch.int64)
conds = text_encoder(token_ids).last_hidden_state
return conds
@torch.inference_mode()
def encode_prompt_pair(positive_prompt, negative_prompt):
c = encode_prompt_inner(positive_prompt)
uc = encode_prompt_inner(negative_prompt)
c_len = float(len(c))
uc_len = float(len(uc))
max_count = max(c_len, uc_len)
c_repeat = int(math.ceil(max_count / c_len))
uc_repeat = int(math.ceil(max_count / uc_len))
max_chunk = max(len(c), len(uc))
c = torch.cat([c] * c_repeat, dim=0)[:max_chunk]
uc = torch.cat([uc] * uc_repeat, dim=0)[:max_chunk]
c = torch.cat([p[None, ...] for p in c], dim=1)
uc = torch.cat([p[None, ...] for p in uc], dim=1)
return c, uc
@torch.inference_mode()
def pytorch2numpy(imgs, quant=True):
results = []
for x in imgs:
y = x.movedim(0, -1)
if quant:
y = y * 127.5 + 127.5
y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8)
else:
y = y * 0.5 + 0.5
y = y.detach().float().cpu().numpy().clip(0, 1).astype(np.float32)
results.append(y)
return results
@torch.inference_mode()
def numpy2pytorch(imgs):
h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.0 - 1.0 # so that 127 must be strictly 0.0
h = h.movedim(-1, 1)
return h
def resize_and_center_crop(image, target_width, target_height):
pil_image = Image.fromarray(image)
original_width, original_height = pil_image.size
scale_factor = max(target_width / original_width, target_height / original_height)
resized_width = int(round(original_width * scale_factor))
resized_height = int(round(original_height * scale_factor))
resized_image = pil_image.resize((resized_width, resized_height), Image.LANCZOS)
left = (resized_width - target_width) / 2
top = (resized_height - target_height) / 2
right = (resized_width + target_width) / 2
bottom = (resized_height + target_height) / 2
cropped_image = resized_image.crop((left, top, right, bottom))
return np.array(cropped_image)
def resize_without_crop(image, target_width, target_height):
pil_image = Image.fromarray(image)
resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS)
return np.array(resized_image)
@torch.inference_mode()
def run_rmbg(img, sigma=0.0):
# Convert RGBA to RGB if needed
if img.shape[-1] == 4:
# Use white background for alpha composition
alpha = img[..., 3:] / 255.0
rgb = img[..., :3]
white_bg = np.ones_like(rgb) * 255
img = (rgb * alpha + white_bg * (1 - alpha)).astype(np.uint8)
H, W, C = img.shape
assert C == 3
k = (256.0 / float(H * W)) ** 0.5
feed = resize_without_crop(img, int(64 * round(W * k)), int(64 * round(H * k)))
feed = numpy2pytorch([feed]).to(device=device, dtype=torch.float32)
alpha = rmbg(feed)[0][0]
alpha = torch.nn.functional.interpolate(alpha, size=(H, W), mode="bilinear")
alpha = alpha.movedim(1, -1)[0]
alpha = alpha.detach().float().cpu().numpy().clip(0, 1)
# Create RGBA image
rgba = np.dstack((img, alpha * 255)).astype(np.uint8)
result = 127 + (img.astype(np.float32) - 127 + sigma) * alpha
return result.clip(0, 255).astype(np.uint8), rgba
@torch.inference_mode()
def process(input_fg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, lowres_denoise, bg_source):
clear_memory()
# Get input dimensions
input_height, input_width = input_fg.shape[:2]
bg_source = BGSource(bg_source)
if bg_source == BGSource.UPLOAD:
pass
elif bg_source == BGSource.UPLOAD_FLIP:
input_bg = np.fliplr(input_bg)
elif bg_source == BGSource.GREY:
input_bg = np.zeros(shape=(input_height, input_width, 3), dtype=np.uint8) + 64
elif bg_source == BGSource.LEFT:
gradient = np.linspace(255, 0, input_width)
image = np.tile(gradient, (input_height, 1))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
elif bg_source == BGSource.RIGHT:
gradient = np.linspace(0, 255, input_width)
image = np.tile(gradient, (input_height, 1))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
elif bg_source == BGSource.TOP:
gradient = np.linspace(255, 0, input_height)[:, None]
image = np.tile(gradient, (1, input_width))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
elif bg_source == BGSource.BOTTOM:
gradient = np.linspace(0, 255, input_height)[:, None]
image = np.tile(gradient, (1, input_width))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
else:
raise 'Wrong initial latent!'
rng = torch.Generator(device=device).manual_seed(int(seed))
# Use input dimensions directly
fg = resize_without_crop(input_fg, input_width, input_height)
concat_conds = numpy2pytorch([fg]).to(device=vae.device, dtype=vae.dtype)
concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor
conds, unconds = encode_prompt_pair(positive_prompt=prompt + ', ' + a_prompt, negative_prompt=n_prompt)
if input_bg is None:
latents = t2i_pipe(
prompt_embeds=conds,
negative_prompt_embeds=unconds,
width=input_width,
height=input_height,
num_inference_steps=steps,
num_images_per_prompt=num_samples,
generator=rng,
output_type='latent',
guidance_scale=cfg,
cross_attention_kwargs={'concat_conds': concat_conds},
).images.to(vae.dtype) / vae.config.scaling_factor
else:
bg = resize_without_crop(input_bg, input_width, input_height)
bg_latent = numpy2pytorch([bg]).to(device=vae.device, dtype=vae.dtype)
bg_latent = vae.encode(bg_latent).latent_dist.mode() * vae.config.scaling_factor
latents = i2i_pipe(
image=bg_latent,
strength=lowres_denoise,
prompt_embeds=conds,
negative_prompt_embeds=unconds,
width=input_width,
height=input_height,
num_inference_steps=int(round(steps / lowres_denoise)),
num_images_per_prompt=num_samples,
generator=rng,
output_type='latent',
guidance_scale=cfg,
cross_attention_kwargs={'concat_conds': concat_conds},
).images.to(vae.dtype) / vae.config.scaling_factor
pixels = vae.decode(latents).sample
pixels = pytorch2numpy(pixels)
pixels = [resize_without_crop(
image=p,
target_width=int(round(input_width * highres_scale / 64.0) * 64),
target_height=int(round(input_height * highres_scale / 64.0) * 64))
for p in pixels]
pixels = numpy2pytorch(pixels).to(device=vae.device, dtype=vae.dtype)
latents = vae.encode(pixels).latent_dist.mode() * vae.config.scaling_factor
latents = latents.to(device=unet.device, dtype=unet.dtype)
highres_height, highres_width = latents.shape[2] * 8, latents.shape[3] * 8
fg = resize_without_crop(input_fg, highres_width, highres_height)
concat_conds = numpy2pytorch([fg]).to(device=vae.device, dtype=vae.dtype)
concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor
latents = i2i_pipe(
image=latents,
strength=highres_denoise,
prompt_embeds=conds,
negative_prompt_embeds=unconds,
width=highres_width,
height=highres_height,
num_inference_steps=int(round(steps / highres_denoise)),
num_images_per_prompt=num_samples,
generator=rng,
output_type='latent',
guidance_scale=cfg,
cross_attention_kwargs={'concat_conds': concat_conds},
).images.to(vae.dtype) / vae.config.scaling_factor
pixels = vae.decode(latents).sample
pixels = pytorch2numpy(pixels)
# Resize back to input dimensions
pixels = [resize_without_crop(p, input_width, input_height) for p in pixels]
pixels = np.stack(pixels)
return pixels
@torch.inference_mode()
def process_bg(input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source):
clear_memory()
bg_source = BGSource(bg_source)
if bg_source == BGSource.UPLOAD:
pass
elif bg_source == BGSource.UPLOAD_FLIP:
input_bg = np.fliplr(input_bg)
elif bg_source == BGSource.GREY:
input_bg = np.zeros(shape=(image_height, image_width, 3), dtype=np.uint8) + 64
elif bg_source == BGSource.LEFT:
gradient = np.linspace(224, 32, image_width)
image = np.tile(gradient, (image_height, 1))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
elif bg_source == BGSource.RIGHT:
gradient = np.linspace(32, 224, image_width)
image = np.tile(gradient, (image_height, 1))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
elif bg_source == BGSource.TOP:
gradient = np.linspace(224, 32, image_height)[:, None]
image = np.tile(gradient, (1, image_width))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
elif bg_source == BGSource.BOTTOM:
gradient = np.linspace(32, 224, image_height)[:, None]
image = np.tile(gradient, (1, image_width))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
else:
raise 'Wrong background source!'
rng = torch.Generator(device=device).manual_seed(seed)
fg = resize_and_center_crop(input_fg, image_width, image_height)
bg = resize_and_center_crop(input_bg, image_width, image_height)
concat_conds = numpy2pytorch([fg, bg]).to(device=vae.device, dtype=vae.dtype)
concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor
concat_conds = torch.cat([c[None, ...] for c in concat_conds], dim=1)
conds, unconds = encode_prompt_pair(positive_prompt=prompt + ', ' + a_prompt, negative_prompt=n_prompt)
latents = t2i_pipe(
prompt_embeds=conds,
negative_prompt_embeds=unconds,
width=image_width,
height=image_height,
num_inference_steps=steps,
num_images_per_prompt=num_samples,
generator=rng,
output_type='latent',
guidance_scale=cfg,
cross_attention_kwargs={'concat_conds': concat_conds},
).images.to(vae.dtype) / vae.config.scaling_factor
pixels = vae.decode(latents).sample
pixels = pytorch2numpy(pixels)
pixels = [resize_without_crop(
image=p,
target_width=int(round(image_width * highres_scale / 64.0) * 64),
target_height=int(round(image_height * highres_scale / 64.0) * 64))
for p in pixels]
pixels = numpy2pytorch(pixels).to(device=vae.device, dtype=vae.dtype)
latents = vae.encode(pixels).latent_dist.mode() * vae.config.scaling_factor
latents = latents.to(device=unet.device, dtype=unet.dtype)
image_height, image_width = latents.shape[2] * 8, latents.shape[3] * 8
fg = resize_and_center_crop(input_fg, image_width, image_height)
bg = resize_and_center_crop(input_bg, image_width, image_height)
concat_conds = numpy2pytorch([fg, bg]).to(device=vae.device, dtype=vae.dtype)
concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor
concat_conds = torch.cat([c[None, ...] for c in concat_conds], dim=1)
latents = i2i_pipe(
image=latents,
strength=highres_denoise,
prompt_embeds=conds,
negative_prompt_embeds=unconds,
width=image_width,
height=image_height,
num_inference_steps=int(round(steps / highres_denoise)),
num_images_per_prompt=num_samples,
generator=rng,
output_type='latent',
guidance_scale=cfg,
cross_attention_kwargs={'concat_conds': concat_conds},
).images.to(vae.dtype) / vae.config.scaling_factor
pixels = vae.decode(latents).sample
pixels = pytorch2numpy(pixels, quant=False)
clear_memory()
return pixels, [fg, bg]
@torch.inference_mode()
def process_relight(input_fg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, lowres_denoise, bg_source):
input_fg, matting = run_rmbg(input_fg)
results = process(input_fg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, lowres_denoise, bg_source)
return input_fg, results
@torch.inference_mode()
def process_relight_bg(input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source):
bg_source = BGSource(bg_source)
# Convert numerical inputs to appropriate types
image_width = int(image_width)
image_height = int(image_height)
num_samples = int(num_samples)
seed = int(seed)
steps = int(steps)
cfg = float(cfg)
highres_scale = float(highres_scale)
highres_denoise = float(highres_denoise)
if bg_source == BGSource.UPLOAD:
pass
elif bg_source == BGSource.UPLOAD_FLIP:
input_bg = np.fliplr(input_bg)
elif bg_source == BGSource.GREY:
input_bg = np.zeros(shape=(image_height, image_width, 3), dtype=np.uint8) + 64
elif bg_source == BGSource.LEFT:
gradient = np.linspace(224, 32, image_width)
image = np.tile(gradient, (image_height, 1))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
elif bg_source == BGSource.RIGHT:
gradient = np.linspace(32, 224, image_width)
image = np.tile(gradient, (image_height, 1))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
elif bg_source == BGSource.TOP:
gradient = np.linspace(224, 32, image_height)[:, None]
image = np.tile(gradient, (1, image_width))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
elif bg_source == BGSource.BOTTOM:
gradient = np.linspace(32, 224, image_height)[:, None]
image = np.tile(gradient, (1, image_width))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
else:
raise ValueError('Wrong background source!')
input_fg, matting = run_rmbg(input_fg)
results, extra_images = process_bg(input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source)
results = [(x * 255.0).clip(0, 255).astype(np.uint8) for x in results]
final_results = results + extra_images
# Save the generated images
save_images(results, prefix="relight")
return results
quick_prompts = [
'sunshine from window',
'neon light, city',
'sunset over sea',
'golden time',
'sci-fi RGB glowing, cyberpunk',
'natural lighting',
'warm atmosphere, at home, bedroom',
'magic lit',
'evil, gothic, Yharnam',
'light and shadow',
'shadow from window',
'soft studio lighting',
'home atmosphere, cozy bedroom illumination',
'neon, Wong Kar-wai, warm'
]
quick_prompts = [[x] for x in quick_prompts]
quick_subjects = [
'modern sofa, high quality leather',
'elegant dining table, polished wood',
'luxurious bed, premium mattress',
'minimalist office desk, clean design',
'vintage wooden cabinet, antique finish',
]
quick_subjects = [[x] for x in quick_subjects]
class BGSource(Enum):
UPLOAD = "Use Background Image"
UPLOAD_FLIP = "Use Flipped Background Image"
LEFT = "Left Light"
RIGHT = "Right Light"
TOP = "Top Light"
BOTTOM = "Bottom Light"
GREY = "Ambient"
# Add save function
def save_images(images, prefix="relight"):
# Create output directory if it doesn't exist
output_dir = Path("outputs")
output_dir.mkdir(exist_ok=True)
# Create timestamp for unique filenames
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
saved_paths = []
for i, img in enumerate(images):
if isinstance(img, np.ndarray):
# Convert to PIL Image if numpy array
img = Image.fromarray(img)
# Create filename with timestamp
filename = f"{prefix}_{timestamp}_{i+1}.png"
filepath = output_dir / filename
# Save image
img.save(filepath)
# print(f"Saved {len(saved_paths)} images to {output_dir}")
return saved_paths
class MaskMover:
def __init__(self):
self.extracted_fg = None
self.original_fg = None # Store original foreground
def set_extracted_fg(self, fg_image):
"""Store the extracted foreground with alpha channel"""
if isinstance(fg_image, np.ndarray):
self.extracted_fg = fg_image.copy()
self.original_fg = fg_image.copy()
else:
self.extracted_fg = np.array(fg_image)
self.original_fg = np.array(fg_image)
return self.extracted_fg
def create_composite(self, background, x_pos, y_pos, scale=1.0):
"""Create composite with foreground at specified position"""
if self.original_fg is None or background is None:
return background
# Convert inputs to PIL Images
if isinstance(background, np.ndarray):
bg = Image.fromarray(background).convert('RGBA')
else:
bg = background.convert('RGBA')
if isinstance(self.original_fg, np.ndarray):
fg = Image.fromarray(self.original_fg).convert('RGBA')
else:
fg = self.original_fg.convert('RGBA')
# Scale the foreground size
new_width = int(fg.width * scale)
new_height = int(fg.height * scale)
fg = fg.resize((new_width, new_height), Image.LANCZOS)
# Center the scaled foreground at the position
x = int(x_pos - new_width / 2)
y = int(y_pos - new_height / 2)
# Create composite
result = bg.copy()
result.paste(fg, (x, y), fg) # Use fg as the mask (requires fg to be in 'RGBA' mode)
return np.array(result.convert('RGB')) # Convert back to 'RGB' if needed
def get_depth(image):
if image is None:
return None
# Convert from PIL/gradio format to cv2
raw_img = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
# Get depth map
depth = model.infer_image(raw_img) # HxW raw depth map
# Normalize depth for visualization
depth = ((depth - depth.min()) / (depth.max() - depth.min()) * 255).astype(np.uint8)
# Convert to RGB for display
depth_colored = cv2.applyColorMap(depth, cv2.COLORMAP_INFERNO)
depth_colored = cv2.cvtColor(depth_colored, cv2.COLOR_BGR2RGB)
return Image.fromarray(depth_colored)
from PIL import Image
def compress_image(image):
# Convert Gradio image (numpy array) to PIL Image
img = Image.fromarray(image)
# Resize image if dimensions are too large
max_size = 1024 # Maximum dimension size
if img.width > max_size or img.height > max_size:
ratio = min(max_size/img.width, max_size/img.height)
new_size = (int(img.width * ratio), int(img.height * ratio))
img = img.resize(new_size, Image.Resampling.LANCZOS)
quality = 95 # Start with high quality
img.save("compressed_image.jpg", "JPEG", quality=quality) # Initial save
# Check file size and adjust quality if necessary
while os.path.getsize("compressed_image.jpg") > 100 * 1024: # 100KB limit
quality -= 5 # Decrease quality
img.save("compressed_image.jpg", "JPEG", quality=quality)
if quality < 20: # Prevent quality from going too low
break
# Convert back to numpy array for Gradio
compressed_img = np.array(Image.open("compressed_image.jpg"))
return compressed_img
@spaces.GPU(duration=60)
@torch.inference_mode()
def process_image(input_image, input_text):
"""Main processing function for the Gradio interface"""
# Initialize configs
API_TOKEN = "9c8c865e10ec1821bea79d9fa9dc8720"
SAM2_CHECKPOINT = "./checkpoints/sam2_hiera_large.pt"
SAM2_MODEL_CONFIG = os.path.join(os.path.dirname(os.path.abspath(__file__)), "configs/sam2_hiera_l.yaml")
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
OUTPUT_DIR = Path("outputs/grounded_sam2_dinox_demo")
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
# Initialize DDS client
config = Config(API_TOKEN)
client = Client(config)
# Process classes from text prompt
classes = [x.strip().lower() for x in input_text.split('.') if x]
class_name_to_id = {name: id for id, name in enumerate(classes)}
class_id_to_name = {id: name for name, id in class_name_to_id.items()}
# Save input image to temp file and get URL
with tempfile.NamedTemporaryFile(suffix='.jpg', delete=False) as tmpfile:
cv2.imwrite(tmpfile.name, input_image)
image_url = client.upload_file(tmpfile.name)
os.remove(tmpfile.name)
# Run DINO-X detection
task = DinoxTask(
image_url=image_url,
prompts=[TextPrompt(text=input_text)]
)
client.run_task(task)
result = task.result
objects = result.objects
# Process detection results
input_boxes = []
confidences = []
class_names = []
class_ids = []
for obj in objects:
input_boxes.append(obj.bbox)
confidences.append(obj.score)
cls_name = obj.category.lower().strip()
class_names.append(cls_name)
class_ids.append(class_name_to_id[cls_name])
input_boxes = np.array(input_boxes)
class_ids = np.array(class_ids)
# Initialize SAM2
torch.autocast(device_type=DEVICE, dtype=torch.bfloat16).__enter__()
if torch.cuda.get_device_properties(0).major >= 8:
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
sam2_model = build_sam2(SAM2_MODEL_CONFIG, SAM2_CHECKPOINT, device=DEVICE)
sam2_predictor = SAM2ImagePredictor(sam2_model)
sam2_predictor.set_image(input_image)
# sam2_predictor = run_sam_inference(SAM_IMAGE_MODEL, input_image, detections)
# Get masks from SAM2
masks, scores, logits = sam2_predictor.predict(
point_coords=None,
point_labels=None,
box=input_boxes,
multimask_output=False,
)
if masks.ndim == 4:
masks = masks.squeeze(1)
# Create visualization
labels = [f"{class_name} {confidence:.2f}"
for class_name, confidence in zip(class_names, confidences)]
detections = sv.Detections(
xyxy=input_boxes,
mask=masks.astype(bool),
class_id=class_ids
)
box_annotator = sv.BoxAnnotator()
label_annotator = sv.LabelAnnotator()
mask_annotator = sv.MaskAnnotator()
annotated_frame = input_image.copy()
annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections)
annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
annotated_frame = mask_annotator.annotate(scene=annotated_frame, detections=detections)
# Create transparent mask for first detected object
if len(detections) > 0:
# Get first mask
first_mask = detections.mask[0]
# Get original RGB image
img = input_image.copy()
H, W, C = img.shape
# Create RGBA image
alpha = np.zeros((H, W, 1), dtype=np.uint8)
alpha[first_mask] = 255
rgba = np.dstack((img, alpha)).astype(np.uint8)
# Crop to mask bounds to minimize image size
y_indices, x_indices = np.where(first_mask)
y_min, y_max = y_indices.min(), y_indices.max()
x_min, x_max = x_indices.min(), x_indices.max()
# Crop the RGBA image
cropped_rgba = rgba[y_min:y_max+1, x_min:x_max+1]
# Set extracted foreground for mask mover
mask_mover.set_extracted_fg(cropped_rgba)
return annotated_frame, cropped_rgba, gr.update(visible=True), gr.update(visible=True)
return annotated_frame, None, gr.update(visible=False), gr.update(visible=False)
block = gr.Blocks().queue()
with block:
with gr.Tab("Text"):
with gr.Row():
gr.Markdown("## Product Placement from Text")
with gr.Row():
with gr.Column():
with gr.Row():
input_fg = gr.Image(type="numpy", label="Image", height=480)
with gr.Row():
with gr.Group():
find_objects_button = gr.Button(value="(Option 1) Segment Object from text")
text_prompt = gr.Textbox(
label="Text Prompt",
placeholder="Enter object classes separated by periods (e.g. 'car . person .')",
value="couch . table ."
)
extract_button = gr.Button(value="(Option 2) Remove Background")
with gr.Row():
extracted_objects = gr.Image(type="numpy", label="Extracted Foreground", height=480)
extracted_fg = gr.Image(type="numpy", label="Extracted Foreground", height=480)
# output_bg = gr.Image(type="numpy", label="Preprocessed Foreground", height=480)
with gr.Group():
prompt = gr.Textbox(label="Prompt")
bg_source = gr.Radio(choices=[e.value for e in BGSource],
value=BGSource.GREY.value,
label="Lighting Preference (Initial Latent)", type='value')
example_quick_subjects = gr.Dataset(samples=quick_subjects, label='Subject Quick List', samples_per_page=1000, components=[prompt])
example_quick_prompts = gr.Dataset(samples=quick_prompts, label='Lighting Quick List', samples_per_page=1000, components=[prompt])
relight_button = gr.Button(value="Relight")
with gr.Group():
with gr.Row():
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
seed = gr.Number(label="Seed", value=12345, precision=0)
with gr.Row():
image_width = gr.Slider(label="Image Width", minimum=256, maximum=1024, value=512, step=64)
image_height = gr.Slider(label="Image Height", minimum=256, maximum=1024, value=640, step=64)
with gr.Accordion("Advanced options", open=False):
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=15, step=1)
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=2, step=0.01)
lowres_denoise = gr.Slider(label="Lowres Denoise (for initial latent)", minimum=0.1, maximum=1.0, value=0.9, step=0.01)
highres_scale = gr.Slider(label="Highres Scale", minimum=1.0, maximum=3.0, value=1.5, step=0.01)
highres_denoise = gr.Slider(label="Highres Denoise", minimum=0.1, maximum=1.0, value=0.5, step=0.01)
a_prompt = gr.Textbox(label="Added Prompt", value='best quality')
n_prompt = gr.Textbox(label="Negative Prompt", value='lowres, bad anatomy, bad hands, cropped, worst quality')
with gr.Column():
result_gallery = gr.Gallery(height=832, object_fit='contain', label='Outputs')
with gr.Row():
dummy_image_for_outputs = gr.Image(visible=False, label='Result')
# gr.Examples(
# fn=lambda *args: ([args[-1]], None),
# examples=db_examples.foreground_conditioned_examples,
# inputs=[
# input_fg, prompt, bg_source, image_width, image_height, seed, dummy_image_for_outputs
# ],
# outputs=[result_gallery, output_bg],
# run_on_click=True, examples_per_page=1024
# )
ips = [input_fg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, lowres_denoise, bg_source]
relight_button.click(fn=process_relight, inputs=ips, outputs=[extracted_fg, result_gallery])
example_quick_prompts.click(lambda x, y: ', '.join(y.split(', ')[:2] + [x[0]]), inputs=[example_quick_prompts, prompt], outputs=prompt, show_progress=False, queue=False)
example_quick_subjects.click(lambda x: x[0], inputs=example_quick_subjects, outputs=prompt, show_progress=False, queue=False)
find_objects_button.click(
fn=process_image,
inputs=[input_fg, text_prompt],
outputs=[extracted_objects, extracted_fg]
)
with gr.Tab("Background", visible=False):
# empty cache
mask_mover = MaskMover()
# with torch.no_grad():
# # Update the input channels to 12
# new_conv_in = torch.nn.Conv2d(12, unet.conv_in.out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding) # Changed from 8 to 12
# new_conv_in.weight.zero_()
# new_conv_in.weight[:, :4, :, :].copy_(unet.conv_in.weight)
# new_conv_in.bias = unet.conv_in.bias
# unet.conv_in = new_conv_in
with gr.Row():
gr.Markdown("## IC-Light (Relighting with Foreground and Background Condition)")
gr.Markdown("💾 Generated images are automatically saved to 'outputs' folder")
with gr.Row():
with gr.Column():
# Step 1: Input and Extract
with gr.Row():
with gr.Group():
gr.Markdown("### Step 1: Extract Foreground")
input_image = gr.Image(type="numpy", label="Input Image", height=480)
# find_objects_button = gr.Button(value="Find Objects")
extract_button = gr.Button(value="Remove Background")
extracted_fg = gr.Image(type="numpy", label="Extracted Foreground", height=480)
with gr.Row():
# Step 2: Background and Position
with gr.Group():
gr.Markdown("### Step 2: Position on Background")
input_bg = gr.Image(type="numpy", label="Background Image", height=480)
with gr.Row():
x_slider = gr.Slider(
minimum=0,
maximum=1000,
label="X Position",
value=500,
visible=False
)
y_slider = gr.Slider(
minimum=0,
maximum=1000,
label="Y Position",
value=500,
visible=False
)
fg_scale_slider = gr.Slider(
label="Foreground Scale",
minimum=0.01,
maximum=3.0,
value=1.0,
step=0.01
)
editor = gr.ImageEditor(
type="numpy",
label="Position Foreground",
height=480,
visible=False
)
get_depth_button = gr.Button(value="Get Depth")
depth_image = gr.Image(type="numpy", label="Depth Image", height=480)
# Step 3: Relighting Options
with gr.Group():
gr.Markdown("### Step 3: Relighting Settings")
prompt = gr.Textbox(label="Prompt")
bg_source = gr.Radio(
choices=[e.value for e in BGSource],
value=BGSource.UPLOAD.value,
label="Background Source",
type='value'
)
example_prompts = gr.Dataset(
samples=quick_prompts,
label='Prompt Quick List',
components=[prompt]
)
# bg_gallery = gr.Gallery(
# height=450,
# label='Background Quick List',
# value=db_examples.bg_samples,
# columns=5,
# allow_preview=False
# )
relight_button_bg = gr.Button(value="Relight")
# Additional settings
with gr.Group():
with gr.Row():
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
seed = gr.Number(label="Seed", value=12345, precision=0)
with gr.Row():
image_width = gr.Slider(label="Image Width", minimum=256, maximum=1024, value=512, step=64)
image_height = gr.Slider(label="Image Height", minimum=256, maximum=1024, value=640, step=64)
with gr.Accordion("Advanced options", open=False):
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=7.0, step=0.01)
highres_scale = gr.Slider(label="Highres Scale", minimum=1.0, maximum=2.0, value=1.2, step=0.01)
highres_denoise = gr.Slider(label="Highres Denoise", minimum=0.1, maximum=0.9, value=0.5, step=0.01)
a_prompt = gr.Textbox(label="Added Prompt", value='best quality')
n_prompt = gr.Textbox(
label="Negative Prompt",
value='lowres, bad anatomy, bad hands, cropped, worst quality'
)
with gr.Column():
result_gallery = gr.Image(height=832, label='Outputs')
def extract_foreground(image):
if image is None:
return None, gr.update(visible=True), gr.update(visible=True)
result, rgba = run_rmbg(image)
mask_mover.set_extracted_fg(rgba)
return result, gr.update(visible=True), gr.update(visible=True)
original_bg = None
extract_button.click(
fn=extract_foreground,
inputs=[input_image],
outputs=[extracted_fg, x_slider, y_slider]
)
find_objects_button.click(
fn=process_image,
inputs=[input_image, text_prompt],
outputs=[extracted_objects, extracted_fg, x_slider, y_slider]
)
get_depth_button.click(
fn=get_depth,
inputs=[input_bg],
outputs=[depth_image]
)
# def update_position(background, x_pos, y_pos, scale):
# """Update composite when position changes"""
# global original_bg
# if background is None:
# return None
# if original_bg is None:
# original_bg = background.copy()
# # Convert string values to float
# x_pos = float(x_pos)
# y_pos = float(y_pos)
# scale = float(scale)
# return mask_mover.create_composite(original_bg, x_pos, y_pos, scale)
class BackgroundManager:
def __init__(self):
self.original_bg = None
def update_position(self, background, x_pos, y_pos, scale):
"""Update composite when position changes"""
if background is None:
return None
if self.original_bg is None:
self.original_bg = background.copy()
# Convert string values to float
x_pos = float(x_pos)
y_pos = float(y_pos)
scale = float(scale)
return mask_mover.create_composite(self.original_bg, x_pos, y_pos, scale)
# Create an instance of BackgroundManager
bg_manager = BackgroundManager()
x_slider.change(
fn=lambda bg, x, y, scale: bg_manager.update_position(bg, x, y, scale),
inputs=[input_bg, x_slider, y_slider, fg_scale_slider],
outputs=[input_bg]
)
y_slider.change(
fn=lambda bg, x, y, scale: bg_manager.update_position(bg, x, y, scale),
inputs=[input_bg, x_slider, y_slider, fg_scale_slider],
outputs=[input_bg]
)
fg_scale_slider.change(
fn=lambda bg, x, y, scale: bg_manager.update_position(bg, x, y, scale),
inputs=[input_bg, x_slider, y_slider, fg_scale_slider],
outputs=[input_bg]
)
# Update inputs list to include fg_scale_slider
def process_relight_with_position(*args):
if mask_mover.extracted_fg is None:
gr.Warning("Please extract foreground first")
return None
background = args[1] # Get background image
x_pos = float(args[-3]) # x_slider value
y_pos = float(args[-2]) # y_slider value
scale = float(args[-1]) # fg_scale_slider value
# Get original foreground size after scaling
fg = Image.fromarray(mask_mover.original_fg)
new_width = int(fg.width * scale)
new_height = int(fg.height * scale)
# Calculate crop region around foreground position
crop_x = int(x_pos - new_width/2)
crop_y = int(y_pos - new_height/2)
crop_width = new_width
crop_height = new_height
# Add padding for context (20% extra on each side)
padding = 0.2
crop_x = int(crop_x - crop_width * padding)
crop_y = int(crop_y - crop_height * padding)
crop_width = int(crop_width * (1 + 2 * padding))
crop_height = int(crop_height * (1 + 2 * padding))
# Ensure crop dimensions are multiples of 8
crop_width = ((crop_width + 7) // 8) * 8
crop_height = ((crop_height + 7) // 8) * 8
# Ensure crop region is within image bounds
bg_height, bg_width = background.shape[:2]
crop_x = max(0, min(crop_x, bg_width - crop_width))
crop_y = max(0, min(crop_y, bg_height - crop_height))
# Get actual crop dimensions after boundary check
crop_width = min(crop_width, bg_width - crop_x)
crop_height = min(crop_height, bg_height - crop_y)
# Ensure dimensions are multiples of 8 again
crop_width = (crop_width // 8) * 8
crop_height = (crop_height // 8) * 8
# Crop region from background
crop_region = background[crop_y:crop_y+crop_height, crop_x:crop_x+crop_width]
# Create composite in cropped region
fg_local_x = int(new_width/2 + crop_width*padding)
fg_local_y = int(new_height/2 + crop_height*padding)
cropped_composite = mask_mover.create_composite(crop_region, fg_local_x, fg_local_y, scale)
# Process the cropped region
crop_args = list(args)
crop_args[0] = cropped_composite
crop_args[1] = crop_region
crop_args[3] = crop_width
crop_args[4] = crop_height
crop_args = crop_args[:-3] # Remove position and scale arguments
# Get relit result
relit_crop = process_relight_bg(*crop_args)[0]
# Resize relit result to match crop dimensions if needed
if relit_crop.shape[:2] != (crop_height, crop_width):
relit_crop = resize_without_crop(relit_crop, crop_width, crop_height)
# Place relit crop back into original background
result = background.copy()
result[crop_y:crop_y+crop_height, crop_x:crop_x+crop_width] = relit_crop
return result
ips_bg = [input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source]
# Update button click events with new inputs list
relight_button_bg.click(
fn=process_relight_with_position,
inputs=ips_bg,
outputs=[result_gallery]
)
example_prompts.click(
fn=lambda x: x[0],
inputs=example_prompts,
outputs=prompt,
show_progress=False,
queue=False
)
block.launch(server_name='0.0.0.0', share=False) |