Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,005 Bytes
810eec1 917c9b5 810eec1 917c9b5 810eec1 6b7695c 1df93cf 5fd8731 6b7695c 810eec1 5c1cf77 6b7695c 155ab36 6b7695c 5c1cf77 6b7695c 810eec1 7b38cfe 810eec1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
import argparse
import numpy as np
import torch
from diffusers import AutoencoderKL, DDPMScheduler, LCMScheduler, UNet2DConditionModel
from PIL import Image
from torchvision import transforms
from tqdm import tqdm
from transformers import AutoModelForImageSegmentation
from mvadapter.pipelines.pipeline_mvadapter_i2mv_sdxl import MVAdapterI2MVSDXLPipeline
from mvadapter.schedulers.scheduling_shift_snr import ShiftSNRScheduler
from mvadapter.utils import (
get_orthogonal_camera,
get_plucker_embeds_from_cameras_ortho,
make_image_grid,
)
def prepare_pipeline(
base_model,
vae_model,
unet_model,
lora_model,
adapter_path,
scheduler,
num_views,
device,
dtype,
):
# Load vae and unet if provided
pipe_kwargs = {}
if vae_model is not None:
pipe_kwargs["vae"] = AutoencoderKL.from_pretrained(vae_model)
if unet_model is not None:
pipe_kwargs["unet"] = UNet2DConditionModel.from_pretrained(unet_model)
# Prepare pipeline
pipe: MVAdapterI2MVSDXLPipeline
pipe = MVAdapterI2MVSDXLPipeline.from_pretrained(base_model, **pipe_kwargs)
# Load scheduler if provided
scheduler_class = None
if scheduler == "ddpm":
scheduler_class = DDPMScheduler
elif scheduler == "lcm":
scheduler_class = LCMScheduler
pipe.scheduler = ShiftSNRScheduler.from_scheduler(
pipe.scheduler,
shift_mode="interpolated",
shift_scale=8.0,
scheduler_class=scheduler_class,
)
pipe.init_custom_adapter(num_views=num_views)
pipe.load_custom_adapter(
adapter_path, weight_name="mvadapter_i2mv_sdxl.safetensors"
)
pipe.to(device=device, dtype=dtype)
pipe.cond_encoder.to(device=device, dtype=dtype)
# load lora if provided
if lora_model is not None:
model_, name_ = lora_model.rsplit("/", 1)
pipe.load_lora_weights(model_, weight_name=name_)
# vae slicing for lower memory usage
pipe.enable_vae_slicing()
return pipe
def remove_bg(image: Image.Image, net, transform, device, mask: Image.Image = None):
"""
Applies a pre-existing mask to an image to make the background transparent.
Args:
image (PIL.Image.Image): The input image.
net: Pre-trained neural network (not used but kept for compatibility).
transform: Image transformation object (not used but kept for compatibility).
device: Device used for inference (not used but kept for compatibility).
mask (PIL.Image.Image, optional): The mask to use. Should be the same size
as the input image, with values between 0 and 255 (or 0-1).
If None, will return image with no changes.
Returns:
PIL.Image.Image: The modified image with transparent background.
"""
if mask is None:
return image
image_size = image.size
if mask.size != image_size:
mask = mask.resize(image_size) # Resizing the mask if it is not the same size as image
image.putalpha(mask)
return image
def remove_bg(image, net, transform, device):
image_size = image.size
input_images = transform(image).unsqueeze(0).to(device)
with torch.no_grad():
preds = net(input_images)[-1].sigmoid().cpu()
#preds = net(input_images)[-1] if isinstance(net(input_images), list) else net(input_images)
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
image.putalpha(mask)
return image
def preprocess_image(image: Image.Image, height, width):
alpha = image[..., 3] > 0
# alpha = image
#if image.mode in ("RGBA", "LA"):
# image = np.array(image)
# alpha = image[..., 3] # Extract the alpha channel
#elif image.mode in ("RGB"):
# image = np.array(image)
# Create default alpha for non-alpha images
# alpha = np.ones(image[..., 0].shape, dtype=np.uint8) * 255 # Create
H, W = alpha.shape
# get the bounding box of alpha
y, x = np.where(alpha)
y0, y1 = max(y.min() - 1, 0), min(y.max() + 1, H)
x0, x1 = max(x.min() - 1, 0), min(x.max() + 1, W)
image_center = image[y0:y1, x0:x1]
# resize the longer side to H * 0.9
H, W, _ = image_center.shape
if H > W:
W = int(W * (height * 0.9) / H)
H = int(height * 0.9)
else:
H = int(H * (width * 0.9) / W)
W = int(width * 0.9)
image_center = np.array(Image.fromarray(image_center).resize((W, H)))
# pad to H, W
start_h = (height - H) // 2
start_w = (width - W) // 2
image = np.zeros((height, width, 4), dtype=np.uint8)
image[start_h : start_h + H, start_w : start_w + W] = image_center
image = image.astype(np.float32) / 255.0
image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
image = (image * 255).clip(0, 255).astype(np.uint8)
image = Image.fromarray(image)
return image
def run_pipeline(
pipe,
num_views,
text,
image,
height,
width,
num_inference_steps,
guidance_scale,
seed,
remove_bg_fn=None,
reference_conditioning_scale=1.0,
negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast",
lora_scale=1.0,
device="cuda",
):
# Prepare cameras
cameras = get_orthogonal_camera(
elevation_deg=[0, 0, 0, 0, 0, 0],
distance=[1.8] * num_views,
left=-0.55,
right=0.55,
bottom=-0.55,
top=0.55,
azimuth_deg=[x - 90 for x in [0, 45, 90, 180, 270, 315]],
device=device,
)
plucker_embeds = get_plucker_embeds_from_cameras_ortho(
cameras.c2w, [1.1] * num_views, width
)
control_images = ((plucker_embeds + 1.0) / 2.0).clamp(0, 1)
# Prepare image
reference_image = Image.open(image) if isinstance(image, str) else image
if remove_bg_fn is not None:
reference_image = remove_bg_fn(reference_image)
reference_image = preprocess_image(reference_image, height, width)
elif reference_image.mode == "RGBA":
reference_image = preprocess_image(reference_image, height, width)
pipe_kwargs = {}
if seed != -1 and isinstance(seed, int):
pipe_kwargs["generator"] = torch.Generator(device=device).manual_seed(seed)
images = pipe(
text,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=num_views,
control_image=control_images,
control_conditioning_scale=1.0,
reference_image=reference_image,
reference_conditioning_scale=reference_conditioning_scale,
negative_prompt=negative_prompt,
cross_attention_kwargs={"scale": lora_scale},
**pipe_kwargs,
).images
return images, reference_image
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Models
parser.add_argument(
"--base_model", type=str, default="stabilityai/stable-diffusion-xl-base-1.0"
)
parser.add_argument(
"--vae_model", type=str, default="madebyollin/sdxl-vae-fp16-fix"
)
parser.add_argument("--unet_model", type=str, default=None)
parser.add_argument("--scheduler", type=str, default=None)
parser.add_argument("--lora_model", type=str, default=None)
parser.add_argument("--adapter_path", type=str, default="huanngzh/mv-adapter")
parser.add_argument("--num_views", type=int, default=6)
# Device
parser.add_argument("--device", type=str, default="cuda")
# Inference
parser.add_argument("--image", type=str, required=True)
parser.add_argument("--text", type=str, default="high quality")
parser.add_argument("--num_inference_steps", type=int, default=50)
parser.add_argument("--guidance_scale", type=float, default=3.0)
parser.add_argument("--seed", type=int, default=-1)
parser.add_argument("--lora_scale", type=float, default=1.0)
parser.add_argument("--reference_conditioning_scale", type=float, default=1.0)
parser.add_argument(
"--negative_prompt",
type=str,
default="watermark, ugly, deformed, noisy, blurry, low contrast",
)
parser.add_argument("--output", type=str, default="output.png")
# Extra
parser.add_argument("--remove_bg", action="store_true", help="Remove background")
args = parser.parse_args()
pipe = prepare_pipeline(
base_model=args.base_model,
vae_model=args.vae_model,
unet_model=args.unet_model,
lora_model=args.lora_model,
adapter_path=args.adapter_path,
scheduler=args.scheduler,
num_views=args.num_views,
device=args.device,
dtype=torch.float16,
)
if args.remove_bg:
birefnet = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to(args.device)
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
remove_bg_fn = lambda x: remove_bg(x, birefnet, transform_image, args.device)
else:
remove_bg_fn = None
images, reference_image = run_pipeline(
pipe,
num_views=args.num_views,
text=args.text,
image=args.image,
height=768,
width=768,
num_inference_steps=args.num_inference_steps,
guidance_scale=args.guidance_scale,
seed=args.seed,
lora_scale=args.lora_scale,
reference_conditioning_scale=args.reference_conditioning_scale,
negative_prompt=args.negative_prompt,
device=args.device,
remove_bg_fn=remove_bg_fn,
)
make_image_grid(images, rows=1).save(args.output)
reference_image.save(args.output.rsplit(".", 1)[0] + "_reference.png") |