File size: 4,135 Bytes
9d6e43b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import torch.nn as nn


def _make_scratch(in_shape, out_shape, groups=1, expand=False):
    scratch = nn.Module()

    out_shape1 = out_shape
    out_shape2 = out_shape
    out_shape3 = out_shape
    if len(in_shape) >= 4:
        out_shape4 = out_shape

    if expand:
        out_shape1 = out_shape
        out_shape2 = out_shape * 2
        out_shape3 = out_shape * 4
        if len(in_shape) >= 4:
            out_shape4 = out_shape * 8

    scratch.layer1_rn = nn.Conv2d(in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups)
    scratch.layer2_rn = nn.Conv2d(in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups)
    scratch.layer3_rn = nn.Conv2d(in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups)
    if len(in_shape) >= 4:
        scratch.layer4_rn = nn.Conv2d(in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups)

    return scratch


class ResidualConvUnit(nn.Module):
    """Residual convolution module.

    """

    def __init__(self, features, activation, bn):
        """Init.



        Args:

            features (int): number of features

        """
        super().__init__()

        self.bn = bn

        self.groups=1

        self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
        
        self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)

        if self.bn == True:
            self.bn1 = nn.BatchNorm2d(features)
            self.bn2 = nn.BatchNorm2d(features)

        self.activation = activation

        self.skip_add = nn.quantized.FloatFunctional()

    def forward(self, x):
        """Forward pass.



        Args:

            x (tensor): input



        Returns:

            tensor: output

        """
        
        out = self.activation(x)
        out = self.conv1(out)
        if self.bn == True:
            out = self.bn1(out)
       
        out = self.activation(out)
        out = self.conv2(out)
        if self.bn == True:
            out = self.bn2(out)

        if self.groups > 1:
            out = self.conv_merge(out)

        return self.skip_add.add(out, x)


class FeatureFusionBlock(nn.Module):
    """Feature fusion block.

    """

    def __init__(

        self, 

        features, 

        activation, 

        deconv=False, 

        bn=False, 

        expand=False, 

        align_corners=True,

        size=None

    ):
        """Init.

        

        Args:

            features (int): number of features

        """
        super(FeatureFusionBlock, self).__init__()

        self.deconv = deconv
        self.align_corners = align_corners

        self.groups=1

        self.expand = expand
        out_features = features
        if self.expand == True:
            out_features = features // 2
        
        self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)

        self.resConfUnit1 = ResidualConvUnit(features, activation, bn)
        self.resConfUnit2 = ResidualConvUnit(features, activation, bn)
        
        self.skip_add = nn.quantized.FloatFunctional()

        self.size=size

    def forward(self, *xs, size=None):
        """Forward pass.



        Returns:

            tensor: output

        """
        output = xs[0]

        if len(xs) == 2:
            res = self.resConfUnit1(xs[1])
            output = self.skip_add.add(output, res)

        output = self.resConfUnit2(output)

        if (size is None) and (self.size is None):
            modifier = {"scale_factor": 2}
        elif size is None:
            modifier = {"size": self.size}
        else:
            modifier = {"size": size}

        output = nn.functional.interpolate(output, **modifier, mode="bilinear", align_corners=self.align_corners)
        
        output = self.out_conv(output)

        return output