Spaces:
Running
on
Zero
Running
on
Zero
Update app_3.py
Browse files
app_3.py
CHANGED
@@ -150,8 +150,14 @@ vae = AutoencoderKL.from_pretrained(sd15_name, subfolder="vae")
|
|
150 |
unet = UNet2DConditionModel.from_pretrained(sd15_name, subfolder="unet")
|
151 |
# Load model directly
|
152 |
from transformers import AutoModelForImageSegmentation
|
153 |
-
rmbg = AutoModelForImageSegmentation.from_pretrained("briaai/RMBG-1.4", trust_remote_code=True)
|
154 |
-
rmbg = rmbg.to(device=device, dtype=torch.float32) # Keep this as float32
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
model = DepthAnythingV2(encoder='vits', features=64, out_channels=[48, 96, 192, 384])
|
157 |
model.load_state_dict(torch.load('checkpoints/depth_anything_v2_vits.pth', map_location=device))
|
|
|
150 |
unet = UNet2DConditionModel.from_pretrained(sd15_name, subfolder="unet")
|
151 |
# Load model directly
|
152 |
from transformers import AutoModelForImageSegmentation
|
153 |
+
# rmbg = AutoModelForImageSegmentation.from_pretrained("briaai/RMBG-1.4", trust_remote_code=True)
|
154 |
+
# rmbg = rmbg.to(device=device, dtype=torch.float32) # Keep this as float32
|
155 |
+
|
156 |
+
# remove bg
|
157 |
+
rmbg = AutoModelForImageSegmentation.from_pretrained(
|
158 |
+
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
159 |
+
)
|
160 |
+
rmbg = rmbg.to(device)
|
161 |
|
162 |
model = DepthAnythingV2(encoder='vits', features=64, out_channels=[48, 96, 192, 384])
|
163 |
model.load_state_dict(torch.load('checkpoints/depth_anything_v2_vits.pth', map_location=device))
|