Spaces:
Running
on
Zero
Running
on
Zero
Update app_2.py
Browse files
app_2.py
CHANGED
@@ -104,41 +104,6 @@ download_models()
|
|
104 |
|
105 |
|
106 |
|
107 |
-
@spaces.GPU()
|
108 |
-
def infer(
|
109 |
-
prompt,
|
110 |
-
image,
|
111 |
-
do_rembg=False,
|
112 |
-
seed=42,
|
113 |
-
randomize_seed=False,
|
114 |
-
guidance_scale=3.0,
|
115 |
-
num_inference_steps=50,
|
116 |
-
reference_conditioning_scale=1.0,
|
117 |
-
negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast",
|
118 |
-
progress=gr.Progress(track_tqdm=True),
|
119 |
-
):
|
120 |
-
# if do_rembg:
|
121 |
-
# remove_bg_fn = lambda x: remove_bg(x, birefnet, transform_image, device)
|
122 |
-
# else:
|
123 |
-
# remove_bg_fn = None
|
124 |
-
if randomize_seed:
|
125 |
-
seed = random.randint(0, MAX_SEED)
|
126 |
-
images, preprocessed_image = run_pipeline(
|
127 |
-
pipe,
|
128 |
-
num_views=NUM_VIEWS,
|
129 |
-
text=prompt,
|
130 |
-
image=image,
|
131 |
-
height=HEIGHT,
|
132 |
-
width=WIDTH,
|
133 |
-
num_inference_steps=num_inference_steps,
|
134 |
-
guidance_scale=guidance_scale,
|
135 |
-
seed=seed,
|
136 |
-
remove_bg_fn=None,
|
137 |
-
reference_conditioning_scale=reference_conditioning_scale,
|
138 |
-
negative_prompt=negative_prompt,
|
139 |
-
device=device,
|
140 |
-
)
|
141 |
-
return images
|
142 |
|
143 |
|
144 |
try:
|
@@ -381,6 +346,45 @@ def encode_prompt_pair(positive_prompt, negative_prompt):
|
|
381 |
|
382 |
return c, uc
|
383 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
384 |
@spaces.GPU(duration=60)
|
385 |
@torch.inference_mode()
|
386 |
def pytorch2numpy(imgs, quant=True):
|
@@ -1228,7 +1232,8 @@ with block:
|
|
1228 |
example_quick_prompts.click(lambda x, y: ', '.join(y.split(', ')[:2] + [x[0]]), inputs=[example_quick_prompts, prompt], outputs=prompt, show_progress=False, queue=False)
|
1229 |
example_quick_subjects.click(lambda x: x[0], inputs=example_quick_subjects, outputs=prompt, show_progress=False, queue=False)
|
1230 |
|
1231 |
-
run_button.click(
|
|
|
1232 |
inputs=[
|
1233 |
"high quality",
|
1234 |
extracted_fg,
|
|
|
104 |
|
105 |
|
106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
|
109 |
try:
|
|
|
346 |
|
347 |
return c, uc
|
348 |
|
349 |
+
@spaces.GPU(duration=60)
|
350 |
+
@torch.inference_mode()
|
351 |
+
def infer(
|
352 |
+
prompt,
|
353 |
+
image,
|
354 |
+
do_rembg=False,
|
355 |
+
seed=42,
|
356 |
+
randomize_seed=False,
|
357 |
+
guidance_scale=3.0,
|
358 |
+
num_inference_steps=50,
|
359 |
+
reference_conditioning_scale=1.0,
|
360 |
+
negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast",
|
361 |
+
progress=gr.Progress(track_tqdm=True),
|
362 |
+
):
|
363 |
+
# if do_rembg:
|
364 |
+
# remove_bg_fn = lambda x: remove_bg(x, birefnet, transform_image, device)
|
365 |
+
# else:
|
366 |
+
# remove_bg_fn = None
|
367 |
+
if randomize_seed:
|
368 |
+
seed = random.randint(0, MAX_SEED)
|
369 |
+
|
370 |
+
images, preprocessed_image = run_pipeline(
|
371 |
+
pipe,
|
372 |
+
num_views=NUM_VIEWS,
|
373 |
+
text=prompt,
|
374 |
+
image=image,
|
375 |
+
height=HEIGHT,
|
376 |
+
width=WIDTH,
|
377 |
+
num_inference_steps=num_inference_steps,
|
378 |
+
guidance_scale=guidance_scale,
|
379 |
+
seed=seed,
|
380 |
+
remove_bg_fn=None,
|
381 |
+
reference_conditioning_scale=reference_conditioning_scale,
|
382 |
+
negative_prompt=negative_prompt,
|
383 |
+
device=device,
|
384 |
+
)
|
385 |
+
return images
|
386 |
+
|
387 |
+
|
388 |
@spaces.GPU(duration=60)
|
389 |
@torch.inference_mode()
|
390 |
def pytorch2numpy(imgs, quant=True):
|
|
|
1232 |
example_quick_prompts.click(lambda x, y: ', '.join(y.split(', ')[:2] + [x[0]]), inputs=[example_quick_prompts, prompt], outputs=prompt, show_progress=False, queue=False)
|
1233 |
example_quick_subjects.click(lambda x: x[0], inputs=example_quick_subjects, outputs=prompt, show_progress=False, queue=False)
|
1234 |
|
1235 |
+
run_button.click(
|
1236 |
+
fn=infer,
|
1237 |
inputs=[
|
1238 |
"high quality",
|
1239 |
extracted_fg,
|