Ashoka74 commited on
Commit
9dd0174
1 Parent(s): 21e7b2d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -6
app.py CHANGED
@@ -395,6 +395,7 @@ def process(input_fg, prompt, image_width, image_height, num_samples, seed, step
395
  # Get input dimensions
396
  input_height, input_width = input_fg.shape[:2]
397
 
 
398
  bg_source = BGSource(bg_source)
399
 
400
 
@@ -402,7 +403,7 @@ def process(input_fg, prompt, image_width, image_height, num_samples, seed, step
402
  pass
403
  elif bg_source == BGSource.UPLOAD_FLIP:
404
  input_bg = np.fliplr(input_bg)
405
- elif bg_source == BGSource.GREY:
406
  input_bg = np.zeros(shape=(input_height, input_width, 3), dtype=np.uint8) + 64
407
  elif bg_source == BGSource.LEFT:
408
  gradient = np.linspace(255, 0, input_width)
@@ -620,6 +621,8 @@ def process_relight(input_fg, prompt, image_width, image_height, num_samples, se
620
  @torch.inference_mode()
621
  def process_relight_bg(input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source):
622
  bg_source = BGSource(bg_source)
 
 
623
 
624
  # Convert numerical inputs to appropriate types
625
  image_width = int(image_width)
@@ -697,8 +700,8 @@ quick_subjects = [[x] for x in quick_subjects]
697
 
698
 
699
  class BGSource(Enum):
700
- # UPLOAD = "Use Background Image"
701
- # UPLOAD_FLIP = "Use Flipped Background Image"
702
  LEFT = "Left Light"
703
  RIGHT = "Right Light"
704
  TOP = "Top Light"
@@ -984,7 +987,7 @@ with block:
984
  # output_bg = gr.Image(type="numpy", label="Preprocessed Foreground", height=480)
985
  with gr.Group():
986
  prompt = gr.Textbox(label="Prompt")
987
- bg_source = gr.Radio(choices=[e.value for e in BGSource],
988
  value=BGSource.GREY.value,
989
  label="Lighting Preference (Initial Latent)", type='value')
990
  example_quick_subjects = gr.Dataset(samples=quick_subjects, label='Subject Quick List', samples_per_page=1000, components=[prompt])
@@ -1106,9 +1109,10 @@ with block:
1106
  prompt = gr.Textbox(label="Prompt")
1107
  bg_source = gr.Radio(
1108
  choices=[e.value for e in BGSource],
1109
- #value=BGSource.UPLOAD.value,
1110
  label="Background Source",
1111
- type='value'
 
1112
  )
1113
 
1114
  example_prompts = gr.Dataset(
 
395
  # Get input dimensions
396
  input_height, input_width = input_fg.shape[:2]
397
 
398
+ if bg_source is not ""
399
  bg_source = BGSource(bg_source)
400
 
401
 
 
403
  pass
404
  elif bg_source == BGSource.UPLOAD_FLIP:
405
  input_bg = np.fliplr(input_bg)
406
+ if bg_source == BGSource.GREY:
407
  input_bg = np.zeros(shape=(input_height, input_width, 3), dtype=np.uint8) + 64
408
  elif bg_source == BGSource.LEFT:
409
  gradient = np.linspace(255, 0, input_width)
 
621
  @torch.inference_mode()
622
  def process_relight_bg(input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source):
623
  bg_source = BGSource(bg_source)
624
+
625
+ # bg_source = "Use Background Image"
626
 
627
  # Convert numerical inputs to appropriate types
628
  image_width = int(image_width)
 
700
 
701
 
702
  class BGSource(Enum):
703
+ UPLOAD = "Use Background Image"
704
+ UPLOAD_FLIP = "Use Flipped Background Image"
705
  LEFT = "Left Light"
706
  RIGHT = "Right Light"
707
  TOP = "Top Light"
 
987
  # output_bg = gr.Image(type="numpy", label="Preprocessed Foreground", height=480)
988
  with gr.Group():
989
  prompt = gr.Textbox(label="Prompt")
990
+ bg_source = gr.Radio(choices=[e.value for e in BGSource[2:]],
991
  value=BGSource.GREY.value,
992
  label="Lighting Preference (Initial Latent)", type='value')
993
  example_quick_subjects = gr.Dataset(samples=quick_subjects, label='Subject Quick List', samples_per_page=1000, components=[prompt])
 
1109
  prompt = gr.Textbox(label="Prompt")
1110
  bg_source = gr.Radio(
1111
  choices=[e.value for e in BGSource],
1112
+ value=BGSource.UPLOAD.value,
1113
  label="Background Source",
1114
+ type='value',
1115
+ visible=False
1116
  )
1117
 
1118
  example_prompts = gr.Dataset(