Ashoka74 commited on
Commit
afccb60
1 Parent(s): 1c6d80c

Update inference_i2mv_sdxl.py

Browse files
Files changed (1) hide show
  1. inference_i2mv_sdxl.py +46 -11
inference_i2mv_sdxl.py CHANGED
@@ -103,17 +103,52 @@ def remove_bg(image: Image.Image, net, transform, device, mask: Image.Image = No
103
  return image
104
 
105
 
106
- def remove_bg(image, net, transform, device):
107
- image_size = image.size
108
- input_images = transform(image).unsqueeze(0).to(device)
109
- with torch.no_grad():
110
- preds = net(input_images)[0].sigmoid().cpu()
111
- #preds = net(input_images)[-1] if isinstance(net(input_images), list) else net(input_images)
112
- pred = preds[0].squeeze()
113
- pred_pil = transforms.ToPILImage()(pred)
114
- mask = pred_pil.resize(image_size)
115
- image.putalpha(mask)
116
- return image
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117
 
118
 
119
 
 
103
  return image
104
 
105
 
106
+ # def remove_bg(image, net, transform, device):
107
+ # image_size = image.size
108
+ # input_images = transform(image).unsqueeze(0).to(device)
109
+ # with torch.no_grad():
110
+ # preds = net(input_images)[0].sigmoid().cpu()
111
+ # #preds = net(input_images)[-1] if isinstance(net(input_images), list) else net(input_images)
112
+ # pred = preds[0].squeeze()
113
+ # pred_pil = transforms.ToPILImage()(pred)
114
+ # mask = pred_pil.resize(image_size)
115
+ # image.putalpha(mask)
116
+ # return image
117
+
118
+
119
+ # def remove_bg(image: Image.Image, net, transform, device):
120
+ # """
121
+ # Applies a pre-existing mask to an image to make the background transparent.
122
+ # Args:
123
+ # image (PIL.Image.Image): The input image.
124
+ # net: Pre-trained neural network (not used but kept for compatibility).
125
+ # transform: Image transformation object (not used but kept for compatibility).
126
+ # device: Device used for inference (not used but kept for compatibility).
127
+ # Returns:
128
+ # PIL.Image.Image: The modified image with transparent background.
129
+ # """
130
+ # image_size = image.size
131
+ # input_images = transform(image).unsqueeze(0).to(device)
132
+
133
+ # with torch.no_grad():
134
+ # preds = net(input_images)[-1].sigmoid().cpu()
135
+
136
+ # pred = preds[0].squeeze()
137
+ # pred_pil = transforms.ToPILImage()(pred)
138
+
139
+ # # Resize the mask to match the original image size
140
+ # mask = pred_pil.resize(image_size, Image.LANCZOS)
141
+
142
+ # # Create a new image with the same size and mode as the original
143
+ # output_image = Image.new("RGBA", image_size)
144
+
145
+ # # Apply the mask to the original image
146
+ # image.putalpha(mask)
147
+
148
+ # # Composite the original image with the mask
149
+ # output_image.paste(image, (0, 0), image)
150
+
151
+ # return output_image
152
 
153
 
154