Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,501 Bytes
e401952 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import argparse
import numpy as np
import torch
from diffusers import AutoencoderKL, DDPMScheduler, LCMScheduler, UNet2DConditionModel
from PIL import Image
from torchvision import transforms
from tqdm import tqdm
from transformers import AutoModelForImageSegmentation
from mvadapter.pipelines.pipeline_mvadapter_i2mv_sdxl import MVAdapterI2MVSDXLPipeline
from mvadapter.schedulers.scheduling_shift_snr import ShiftSNRScheduler
from mvadapter.utils import (
get_orthogonal_camera,
get_plucker_embeds_from_cameras_ortho,
make_image_grid,
)
def prepare_pipeline(
base_model,
vae_model,
unet_model,
lora_model,
adapter_path,
scheduler,
num_views,
device,
dtype,
):
# Load vae and unet if provided
pipe_kwargs = {}
if vae_model is not None:
pipe_kwargs["vae"] = AutoencoderKL.from_pretrained(vae_model)
if unet_model is not None:
pipe_kwargs["unet"] = UNet2DConditionModel.from_pretrained(unet_model)
# Prepare pipeline
pipe: MVAdapterI2MVSDXLPipeline
pipe = MVAdapterI2MVSDXLPipeline.from_pretrained(base_model, **pipe_kwargs)
# Load scheduler if provided
scheduler_class = None
if scheduler == "ddpm":
scheduler_class = DDPMScheduler
elif scheduler == "lcm":
scheduler_class = LCMScheduler
pipe.scheduler = ShiftSNRScheduler.from_scheduler(
pipe.scheduler,
shift_mode="interpolated",
shift_scale=8.0,
scheduler_class=scheduler_class,
)
pipe.init_custom_adapter(num_views=num_views)
pipe.load_custom_adapter(
adapter_path, weight_name="mvadapter_i2mv_sdxl.safetensors"
)
pipe.to(device=device, dtype=dtype)
pipe.cond_encoder.to(device=device, dtype=dtype)
# load lora if provided
if lora_model is not None:
model_, name_ = lora_model.rsplit("/", 1)
pipe.load_lora_weights(model_, weight_name=name_)
# vae slicing for lower memory usage
pipe.enable_vae_slicing()
return pipe
def remove_bg(image, net, transform, device):
image_size = image.size
input_images = transform(image).unsqueeze(0).to(device)
with torch.no_grad():
preds = net(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
image.putalpha(mask)
return image
def preprocess_image(image: Image.Image, height, width):
image = np.array(image)
alpha = image[..., 3] > 0
H, W = alpha.shape
# get the bounding box of alpha
y, x = np.where(alpha)
y0, y1 = max(y.min() - 1, 0), min(y.max() + 1, H)
x0, x1 = max(x.min() - 1, 0), min(x.max() + 1, W)
image_center = image[y0:y1, x0:x1]
# resize the longer side to H * 0.9
H, W, _ = image_center.shape
if H > W:
W = int(W * (height * 0.9) / H)
H = int(height * 0.9)
else:
H = int(H * (width * 0.9) / W)
W = int(width * 0.9)
image_center = np.array(Image.fromarray(image_center).resize((W, H)))
# pad to H, W
start_h = (height - H) // 2
start_w = (width - W) // 2
image = np.zeros((height, width, 4), dtype=np.uint8)
image[start_h : start_h + H, start_w : start_w + W] = image_center
image = image.astype(np.float32) / 255.0
image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
image = (image * 255).clip(0, 255).astype(np.uint8)
image = Image.fromarray(image)
return image
def run_pipeline(
pipe,
num_views,
text,
image,
height,
width,
num_inference_steps,
guidance_scale,
seed,
remove_bg_fn=None,
reference_conditioning_scale=1.0,
negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast",
lora_scale=1.0,
device="cuda",
):
# Prepare cameras
cameras = get_orthogonal_camera(
elevation_deg=[0, 0, 0, 0, 0, 0],
distance=[1.8] * num_views,
left=-0.55,
right=0.55,
bottom=-0.55,
top=0.55,
azimuth_deg=[x - 90 for x in [0, 45, 90, 180, 270, 315]],
device=device,
)
plucker_embeds = get_plucker_embeds_from_cameras_ortho(
cameras.c2w, [1.1] * num_views, width
)
control_images = ((plucker_embeds + 1.0) / 2.0).clamp(0, 1)
# Prepare image
reference_image = Image.open(image) if isinstance(image, str) else image
if remove_bg_fn is not None:
reference_image = remove_bg_fn(reference_image)
reference_image = preprocess_image(reference_image, height, width)
elif reference_image.mode == "RGBA":
reference_image = preprocess_image(reference_image, height, width)
pipe_kwargs = {}
if seed != -1 and isinstance(seed, int):
pipe_kwargs["generator"] = torch.Generator(device=device).manual_seed(seed)
images = pipe(
text,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=num_views,
control_image=control_images,
control_conditioning_scale=1.0,
reference_image=reference_image,
reference_conditioning_scale=reference_conditioning_scale,
negative_prompt=negative_prompt,
cross_attention_kwargs={"scale": lora_scale},
**pipe_kwargs,
).images
return images, reference_image
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Models
parser.add_argument(
"--base_model", type=str, default="stabilityai/stable-diffusion-xl-base-1.0"
)
parser.add_argument(
"--vae_model", type=str, default="madebyollin/sdxl-vae-fp16-fix"
)
parser.add_argument("--unet_model", type=str, default=None)
parser.add_argument("--scheduler", type=str, default=None)
parser.add_argument("--lora_model", type=str, default=None)
parser.add_argument("--adapter_path", type=str, default="huanngzh/mv-adapter")
parser.add_argument("--num_views", type=int, default=6)
# Device
parser.add_argument("--device", type=str, default="cuda")
# Inference
parser.add_argument("--image", type=str, required=True)
parser.add_argument("--text", type=str, default="high quality")
parser.add_argument("--num_inference_steps", type=int, default=50)
parser.add_argument("--guidance_scale", type=float, default=3.0)
parser.add_argument("--seed", type=int, default=-1)
parser.add_argument("--lora_scale", type=float, default=1.0)
parser.add_argument("--reference_conditioning_scale", type=float, default=1.0)
parser.add_argument(
"--negative_prompt",
type=str,
default="watermark, ugly, deformed, noisy, blurry, low contrast",
)
parser.add_argument("--output", type=str, default="output.png")
# Extra
parser.add_argument("--remove_bg", action="store_true", help="Remove background")
args = parser.parse_args()
pipe = prepare_pipeline(
base_model=args.base_model,
vae_model=args.vae_model,
unet_model=args.unet_model,
lora_model=args.lora_model,
adapter_path=args.adapter_path,
scheduler=args.scheduler,
num_views=args.num_views,
device=args.device,
dtype=torch.float16,
)
if args.remove_bg:
birefnet = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to(args.device)
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
remove_bg_fn = lambda x: remove_bg(x, birefnet, transform_image, args.device)
else:
remove_bg_fn = None
images, reference_image = run_pipeline(
pipe,
num_views=args.num_views,
text=args.text,
image=args.image,
height=768,
width=768,
num_inference_steps=args.num_inference_steps,
guidance_scale=args.guidance_scale,
seed=args.seed,
lora_scale=args.lora_scale,
reference_conditioning_scale=args.reference_conditioning_scale,
negative_prompt=args.negative_prompt,
device=args.device,
remove_bg_fn=remove_bg_fn,
)
make_image_grid(images, rows=1).save(args.output)
reference_image.save(args.output.rsplit(".", 1)[0] + "_reference.png") |