File size: 44,793 Bytes
fb5e185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import numpy as np
import PIL
import torch
import torch.nn as nn
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
from diffusers.models import (
    AutoencoderKL,
    ImageProjection,
    T2IAdapter,
    UNet2DConditionModel,
)
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import (
    StableDiffusionXLPipelineOutput,
)
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import (
    StableDiffusionXLPipeline,
    rescale_noise_cfg,
    retrieve_timesteps,
)
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import deprecate, logging
from diffusers.utils.torch_utils import randn_tensor
from einops import rearrange
from transformers import (
    CLIPImageProcessor,
    CLIPTextModel,
    CLIPTextModelWithProjection,
    CLIPTokenizer,
    CLIPVisionModelWithProjection,
)

from ..loaders import CustomAdapterMixin
from ..models.attention_processor import (
    DecoupledMVRowSelfAttnProcessor2_0,
    set_unet_2d_condition_attn_processor,
)

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


def retrieve_latents(

    encoder_output: torch.Tensor,

    generator: Optional[torch.Generator] = None,

    sample_mode: str = "sample",

):
    if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
        return encoder_output.latent_dist.sample(generator)
    elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
        return encoder_output.latent_dist.mode()
    elif hasattr(encoder_output, "latents"):
        return encoder_output.latents
    else:
        raise AttributeError("Could not access latents of provided encoder_output")


class MVAdapterI2MVSDXLPipeline(StableDiffusionXLPipeline, CustomAdapterMixin):
    def __init__(

        self,

        vae: AutoencoderKL,

        text_encoder: CLIPTextModel,

        text_encoder_2: CLIPTextModelWithProjection,

        tokenizer: CLIPTokenizer,

        tokenizer_2: CLIPTokenizer,

        unet: UNet2DConditionModel,

        scheduler: KarrasDiffusionSchedulers,

        image_encoder: CLIPVisionModelWithProjection = None,

        feature_extractor: CLIPImageProcessor = None,

        force_zeros_for_empty_prompt: bool = True,

        add_watermarker: Optional[bool] = None,

    ):
        super().__init__(
            vae=vae,
            text_encoder=text_encoder,
            text_encoder_2=text_encoder_2,
            tokenizer=tokenizer,
            tokenizer_2=tokenizer_2,
            unet=unet,
            scheduler=scheduler,
            image_encoder=image_encoder,
            feature_extractor=feature_extractor,
            force_zeros_for_empty_prompt=force_zeros_for_empty_prompt,
            add_watermarker=add_watermarker,
        )

        self.control_image_processor = VaeImageProcessor(
            vae_scale_factor=self.vae_scale_factor,
            do_convert_rgb=True,
            do_normalize=False,
        )

    # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.prepare_latents
    def prepare_image_latents(

        self,

        image,

        timestep,

        batch_size,

        num_images_per_prompt,

        dtype,

        device,

        generator=None,

        add_noise=True,

    ):
        if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
            raise ValueError(
                f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
            )

        latents_mean = latents_std = None
        if (
            hasattr(self.vae.config, "latents_mean")
            and self.vae.config.latents_mean is not None
        ):
            latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1)
        if (
            hasattr(self.vae.config, "latents_std")
            and self.vae.config.latents_std is not None
        ):
            latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1)

        # Offload text encoder if `enable_model_cpu_offload` was enabled
        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
            self.text_encoder_2.to("cpu")
            torch.cuda.empty_cache()

        image = image.to(device=device, dtype=dtype)

        batch_size = batch_size * num_images_per_prompt

        if image.shape[1] == 4:
            init_latents = image

        else:
            # make sure the VAE is in float32 mode, as it overflows in float16
            if self.vae.config.force_upcast:
                image = image.float()
                self.vae.to(dtype=torch.float32)

            if isinstance(generator, list) and len(generator) != batch_size:
                raise ValueError(
                    f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                    f" size of {batch_size}. Make sure the batch size matches the length of the generators."
                )

            elif isinstance(generator, list):
                if image.shape[0] < batch_size and batch_size % image.shape[0] == 0:
                    image = torch.cat([image] * (batch_size // image.shape[0]), dim=0)
                elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0:
                    raise ValueError(
                        f"Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} "
                    )

                init_latents = [
                    retrieve_latents(
                        self.vae.encode(image[i : i + 1]), generator=generator[i]
                    )
                    for i in range(batch_size)
                ]
                init_latents = torch.cat(init_latents, dim=0)
            else:
                init_latents = retrieve_latents(
                    self.vae.encode(image), generator=generator
                )

            if self.vae.config.force_upcast:
                self.vae.to(dtype)

            init_latents = init_latents.to(dtype)
            if latents_mean is not None and latents_std is not None:
                latents_mean = latents_mean.to(device=device, dtype=dtype)
                latents_std = latents_std.to(device=device, dtype=dtype)
                init_latents = (
                    (init_latents - latents_mean)
                    * self.vae.config.scaling_factor
                    / latents_std
                )
            else:
                init_latents = self.vae.config.scaling_factor * init_latents

        if (
            batch_size > init_latents.shape[0]
            and batch_size % init_latents.shape[0] == 0
        ):
            # expand init_latents for batch_size
            additional_image_per_prompt = batch_size // init_latents.shape[0]
            init_latents = torch.cat(
                [init_latents] * additional_image_per_prompt, dim=0
            )
        elif (
            batch_size > init_latents.shape[0]
            and batch_size % init_latents.shape[0] != 0
        ):
            raise ValueError(
                f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
            )
        else:
            init_latents = torch.cat([init_latents], dim=0)

        if add_noise:
            shape = init_latents.shape
            noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
            # get latents
            init_latents = self.scheduler.add_noise(init_latents, noise, timestep)

        latents = init_latents

        return latents

    def prepare_control_image(

        self,

        image,

        width,

        height,

        batch_size,

        num_images_per_prompt,

        device,

        dtype,

        do_classifier_free_guidance=False,

        num_empty_images=0,  # for concat in batch like ImageDream

    ):
        assert hasattr(
            self, "control_image_processor"
        ), "control_image_processor is not initialized"

        image = self.control_image_processor.preprocess(
            image, height=height, width=width
        ).to(dtype=torch.float32)

        if num_empty_images > 0:
            image = torch.cat(
                [image, torch.zeros_like(image[:num_empty_images])], dim=0
            )

        image_batch_size = image.shape[0]

        if image_batch_size == 1:
            repeat_by = batch_size
        else:
            # image batch size is the same as prompt batch size
            repeat_by = num_images_per_prompt  # always 1 for control image

        image = image.repeat_interleave(repeat_by, dim=0)

        image = image.to(device=device, dtype=dtype)

        if do_classifier_free_guidance:
            image = torch.cat([image] * 2)

        return image

    @torch.no_grad()
    def __call__(

        self,

        prompt: Union[str, List[str]] = None,

        prompt_2: Optional[Union[str, List[str]]] = None,

        height: Optional[int] = None,

        width: Optional[int] = None,

        num_inference_steps: int = 50,

        timesteps: List[int] = None,

        denoising_end: Optional[float] = None,

        guidance_scale: float = 5.0,

        negative_prompt: Optional[Union[str, List[str]]] = None,

        negative_prompt_2: Optional[Union[str, List[str]]] = None,

        num_images_per_prompt: Optional[int] = 1,

        eta: float = 0.0,

        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,

        latents: Optional[torch.FloatTensor] = None,

        prompt_embeds: Optional[torch.FloatTensor] = None,

        negative_prompt_embeds: Optional[torch.FloatTensor] = None,

        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,

        negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,

        ip_adapter_image: Optional[PipelineImageInput] = None,

        ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,

        output_type: Optional[str] = "pil",

        return_dict: bool = True,

        cross_attention_kwargs: Optional[Dict[str, Any]] = None,

        guidance_rescale: float = 0.0,

        original_size: Optional[Tuple[int, int]] = None,

        crops_coords_top_left: Tuple[int, int] = (0, 0),

        target_size: Optional[Tuple[int, int]] = None,

        negative_original_size: Optional[Tuple[int, int]] = None,

        negative_crops_coords_top_left: Tuple[int, int] = (0, 0),

        negative_target_size: Optional[Tuple[int, int]] = None,

        clip_skip: Optional[int] = None,

        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,

        callback_on_step_end_tensor_inputs: List[str] = ["latents"],

        # NEW

        mv_scale: float = 1.0,

        # Camera or geometry condition

        control_image: Optional[PipelineImageInput] = None,

        control_conditioning_scale: Optional[float] = 1.0,

        control_conditioning_factor: float = 1.0,

        # Image condition

        reference_image: Optional[PipelineImageInput] = None,

        reference_conditioning_scale: Optional[float] = 1.0,

        **kwargs,

    ):
        r"""

        Function invoked when calling the pipeline for generation.



        Args:

            prompt (`str` or `List[str]`, *optional*):

                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.

                instead.

            prompt_2 (`str` or `List[str]`, *optional*):

                The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is

                used in both text-encoders

            height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):

                The height in pixels of the generated image. This is set to 1024 by default for the best results.

                Anything below 512 pixels won't work well for

                [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)

                and checkpoints that are not specifically fine-tuned on low resolutions.

            width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):

                The width in pixels of the generated image. This is set to 1024 by default for the best results.

                Anything below 512 pixels won't work well for

                [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)

                and checkpoints that are not specifically fine-tuned on low resolutions.

            num_inference_steps (`int`, *optional*, defaults to 50):

                The number of denoising steps. More denoising steps usually lead to a higher quality image at the

                expense of slower inference.

            timesteps (`List[int]`, *optional*):

                Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument

                in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is

                passed will be used. Must be in descending order.

            denoising_end (`float`, *optional*):

                When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be

                completed before it is intentionally prematurely terminated. As a result, the returned sample will

                still retain a substantial amount of noise as determined by the discrete timesteps selected by the

                scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a

                "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image

                Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)

            guidance_scale (`float`, *optional*, defaults to 5.0):

                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).

                `guidance_scale` is defined as `w` of equation 2. of [Imagen

                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >

                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,

                usually at the expense of lower image quality.

            negative_prompt (`str` or `List[str]`, *optional*):

                The prompt or prompts not to guide the image generation. If not defined, one has to pass

                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is

                less than `1`).

            negative_prompt_2 (`str` or `List[str]`, *optional*):

                The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and

                `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders

            num_images_per_prompt (`int`, *optional*, defaults to 1):

                The number of images to generate per prompt.

            eta (`float`, *optional*, defaults to 0.0):

                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to

                [`schedulers.DDIMScheduler`], will be ignored for others.

            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):

                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)

                to make generation deterministic.

            latents (`torch.FloatTensor`, *optional*):

                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image

                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents

                tensor will ge generated by sampling using the supplied random `generator`.

            prompt_embeds (`torch.FloatTensor`, *optional*):

                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not

                provided, text embeddings will be generated from `prompt` input argument.

            negative_prompt_embeds (`torch.FloatTensor`, *optional*):

                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt

                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input

                argument.

            pooled_prompt_embeds (`torch.FloatTensor`, *optional*):

                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.

                If not provided, pooled text embeddings will be generated from `prompt` input argument.

            negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):

                Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt

                weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`

                input argument.

            ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.

            ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):

                Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of

                IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should

                contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not

                provided, embeddings are computed from the `ip_adapter_image` input argument.

            output_type (`str`, *optional*, defaults to `"pil"`):

                The output format of the generate image. Choose between

                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.

            return_dict (`bool`, *optional*, defaults to `True`):

                Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead

                of a plain tuple.

            cross_attention_kwargs (`dict`, *optional*):

                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under

                `self.processor` in

                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).

            guidance_rescale (`float`, *optional*, defaults to 0.0):

                Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are

                Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of

                [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).

                Guidance rescale factor should fix overexposure when using zero terminal SNR.

            original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):

                If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.

                `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as

                explained in section 2.2 of

                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).

            crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):

                `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position

                `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting

                `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of

                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).

            target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):

                For most cases, `target_size` should be set to the desired height and width of the generated image. If

                not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in

                section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).

            negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):

                To negatively condition the generation process based on a specific image resolution. Part of SDXL's

                micro-conditioning as explained in section 2.2 of

                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more

                information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.

            negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):

                To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's

                micro-conditioning as explained in section 2.2 of

                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more

                information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.

            negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):

                To negatively condition the generation process based on a target image resolution. It should be as same

                as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of

                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more

                information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.

            callback_on_step_end (`Callable`, *optional*):

                A function that calls at the end of each denoising steps during the inference. The function is called

                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,

                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by

                `callback_on_step_end_tensor_inputs`.

            callback_on_step_end_tensor_inputs (`List`, *optional*):

                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list

                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the

                `._callback_tensor_inputs` attribute of your pipeline class.



        Examples:



        Returns:

            [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:

            [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a

            `tuple`. When returning a tuple, the first element is a list with the generated images.

        """

        callback = kwargs.pop("callback", None)
        callback_steps = kwargs.pop("callback_steps", None)

        if callback is not None:
            deprecate(
                "callback",
                "1.0.0",
                "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
            )
        if callback_steps is not None:
            deprecate(
                "callback_steps",
                "1.0.0",
                "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
            )

        # 0. Default height and width to unet
        height = height or self.default_sample_size * self.vae_scale_factor
        width = width or self.default_sample_size * self.vae_scale_factor

        original_size = original_size or (height, width)
        target_size = target_size or (height, width)

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            prompt_2,
            height,
            width,
            callback_steps,
            negative_prompt,
            negative_prompt_2,
            prompt_embeds,
            negative_prompt_embeds,
            pooled_prompt_embeds,
            negative_pooled_prompt_embeds,
            ip_adapter_image,
            ip_adapter_image_embeds,
            callback_on_step_end_tensor_inputs,
        )

        self._guidance_scale = guidance_scale
        self._guidance_rescale = guidance_rescale
        self._clip_skip = clip_skip
        self._cross_attention_kwargs = cross_attention_kwargs
        self._denoising_end = denoising_end
        self._interrupt = False

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device

        # 3. Encode input prompt
        lora_scale = (
            self.cross_attention_kwargs.get("scale", None)
            if self.cross_attention_kwargs is not None
            else None
        )

        (
            prompt_embeds,
            negative_prompt_embeds,
            pooled_prompt_embeds,
            negative_pooled_prompt_embeds,
        ) = self.encode_prompt(
            prompt=prompt,
            prompt_2=prompt_2,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            do_classifier_free_guidance=self.do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            negative_prompt_2=negative_prompt_2,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
            lora_scale=lora_scale,
            clip_skip=self.clip_skip,
        )

        # 4. Prepare timesteps
        timesteps, num_inference_steps = retrieve_timesteps(
            self.scheduler, num_inference_steps, device, timesteps
        )

        # 5. Prepare latent variables
        num_channels_latents = self.unet.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 7. Prepare added time ids & embeddings
        add_text_embeds = pooled_prompt_embeds
        if self.text_encoder_2 is None:
            text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
        else:
            text_encoder_projection_dim = self.text_encoder_2.config.projection_dim

        add_time_ids = self._get_add_time_ids(
            original_size,
            crops_coords_top_left,
            target_size,
            dtype=prompt_embeds.dtype,
            text_encoder_projection_dim=text_encoder_projection_dim,
        )
        if negative_original_size is not None and negative_target_size is not None:
            negative_add_time_ids = self._get_add_time_ids(
                negative_original_size,
                negative_crops_coords_top_left,
                negative_target_size,
                dtype=prompt_embeds.dtype,
                text_encoder_projection_dim=text_encoder_projection_dim,
            )
        else:
            negative_add_time_ids = add_time_ids

        if self.do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
            add_text_embeds = torch.cat(
                [negative_pooled_prompt_embeds, add_text_embeds], dim=0
            )
            add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)

        prompt_embeds = prompt_embeds.to(device)
        add_text_embeds = add_text_embeds.to(device)
        add_time_ids = add_time_ids.to(device).repeat(
            batch_size * num_images_per_prompt, 1
        )

        if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
            image_embeds = self.prepare_ip_adapter_image_embeds(
                ip_adapter_image,
                ip_adapter_image_embeds,
                device,
                batch_size * num_images_per_prompt,
                self.do_classifier_free_guidance,
            )

        # Preprocess reference image
        reference_image = self.image_processor.preprocess(reference_image)
        reference_latents = self.prepare_image_latents(
            reference_image,
            timesteps[:1].repeat(batch_size * num_images_per_prompt),  # no use
            batch_size,
            1,
            prompt_embeds.dtype,
            device,
            generator,
            add_noise=False,
        )

        with torch.no_grad():
            ref_timesteps = torch.zeros_like(timesteps[0])
            ref_hidden_states = {}

            self.unet(
                reference_latents,
                ref_timesteps,
                encoder_hidden_states=prompt_embeds[-1:],
                added_cond_kwargs={
                    "text_embeds": add_text_embeds[-1:],
                    "time_ids": add_time_ids[-1:],
                },
                cross_attention_kwargs={
                    "cache_hidden_states": ref_hidden_states,
                    "use_mv": False,
                    "use_ref": False,
                },
                return_dict=False,
            )
            ref_hidden_states = {
                k: v.repeat_interleave(num_images_per_prompt, dim=0)
                for k, v in ref_hidden_states.items()
            }
        if self.do_classifier_free_guidance:
            ref_hidden_states = {
                k: torch.cat([torch.zeros_like(v), v], dim=0)
                for k, v in ref_hidden_states.items()
            }

        cross_attention_kwargs = {
            "mv_scale": mv_scale,
            "ref_hidden_states": {k: v.clone() for k, v in ref_hidden_states.items()},
            "ref_scale": reference_conditioning_scale,
            **(self.cross_attention_kwargs or {}),
        }

        # Preprocess control image
        control_image_feature = self.prepare_control_image(
            image=control_image,
            width=width,
            height=height,
            batch_size=batch_size * num_images_per_prompt,
            num_images_per_prompt=1,  # NOTE: always 1 for control images
            device=device,
            dtype=latents.dtype,
            do_classifier_free_guidance=self.do_classifier_free_guidance,
        )
        control_image_feature = control_image_feature.to(
            device=device, dtype=latents.dtype
        )

        adapter_state = self.cond_encoder(control_image_feature)
        for i, state in enumerate(adapter_state):
            adapter_state[i] = state * control_conditioning_scale

        # 8. Denoising loop
        num_warmup_steps = max(
            len(timesteps) - num_inference_steps * self.scheduler.order, 0
        )

        # 8.1 Apply denoising_end
        if (
            self.denoising_end is not None
            and isinstance(self.denoising_end, float)
            and self.denoising_end > 0
            and self.denoising_end < 1
        ):
            discrete_timestep_cutoff = int(
                round(
                    self.scheduler.config.num_train_timesteps
                    - (self.denoising_end * self.scheduler.config.num_train_timesteps)
                )
            )
            num_inference_steps = len(
                list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))
            )
            timesteps = timesteps[:num_inference_steps]

        # 9. Optionally get Guidance Scale Embedding
        timestep_cond = None
        if self.unet.config.time_cond_proj_dim is not None:
            guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(
                batch_size * num_images_per_prompt
            )
            timestep_cond = self.get_guidance_scale_embedding(
                guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
            ).to(device=device, dtype=latents.dtype)

        self._num_timesteps = len(timesteps)
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if self.interrupt:
                    continue

                # expand the latents if we are doing classifier free guidance
                latent_model_input = (
                    torch.cat([latents] * 2)
                    if self.do_classifier_free_guidance
                    else latents
                )

                latent_model_input = self.scheduler.scale_model_input(
                    latent_model_input, t
                )

                added_cond_kwargs = {
                    "text_embeds": add_text_embeds,
                    "time_ids": add_time_ids,
                }
                if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
                    added_cond_kwargs["image_embeds"] = image_embeds

                if i < int(num_inference_steps * control_conditioning_factor):
                    down_intrablock_additional_residuals = [
                        state.clone() for state in adapter_state
                    ]
                else:
                    down_intrablock_additional_residuals = None

                # predict the noise residual
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    timestep_cond=timestep_cond,
                    cross_attention_kwargs=cross_attention_kwargs,
                    down_intrablock_additional_residuals=down_intrablock_additional_residuals,
                    added_cond_kwargs=added_cond_kwargs,
                    return_dict=False,
                )[0]

                # perform guidance
                if self.do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + self.guidance_scale * (
                        noise_pred_text - noise_pred_uncond
                    )

                if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
                    # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
                    noise_pred = rescale_noise_cfg(
                        noise_pred,
                        noise_pred_text,
                        guidance_rescale=self.guidance_rescale,
                    )

                # compute the previous noisy sample x_t -> x_t-1
                latents_dtype = latents.dtype
                latents = self.scheduler.step(
                    noise_pred, t, latents, **extra_step_kwargs, return_dict=False
                )[0]
                if latents.dtype != latents_dtype:
                    if torch.backends.mps.is_available():
                        # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
                        latents = latents.to(latents_dtype)

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop(
                        "negative_prompt_embeds", negative_prompt_embeds
                    )
                    add_text_embeds = callback_outputs.pop(
                        "add_text_embeds", add_text_embeds
                    )
                    negative_pooled_prompt_embeds = callback_outputs.pop(
                        "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
                    )
                    add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
                    negative_add_time_ids = callback_outputs.pop(
                        "negative_add_time_ids", negative_add_time_ids
                    )

                # call the callback, if provided
                if i == len(timesteps) - 1 or (
                    (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
                ):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)

        if not output_type == "latent":
            # make sure the VAE is in float32 mode, as it overflows in float16
            needs_upcasting = (
                self.vae.dtype == torch.float16 and self.vae.config.force_upcast
            )

            if needs_upcasting:
                self.upcast_vae()
                latents = latents.to(
                    next(iter(self.vae.post_quant_conv.parameters())).dtype
                )
            elif latents.dtype != self.vae.dtype:
                if torch.backends.mps.is_available():
                    # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
                    self.vae = self.vae.to(latents.dtype)

            # unscale/denormalize the latents
            # denormalize with the mean and std if available and not None
            has_latents_mean = (
                hasattr(self.vae.config, "latents_mean")
                and self.vae.config.latents_mean is not None
            )
            has_latents_std = (
                hasattr(self.vae.config, "latents_std")
                and self.vae.config.latents_std is not None
            )
            if has_latents_mean and has_latents_std:
                latents_mean = (
                    torch.tensor(self.vae.config.latents_mean)
                    .view(1, 4, 1, 1)
                    .to(latents.device, latents.dtype)
                )
                latents_std = (
                    torch.tensor(self.vae.config.latents_std)
                    .view(1, 4, 1, 1)
                    .to(latents.device, latents.dtype)
                )
                latents = (
                    latents * latents_std / self.vae.config.scaling_factor
                    + latents_mean
                )
            else:
                latents = latents / self.vae.config.scaling_factor

            image = self.vae.decode(latents, return_dict=False)[0]

            # cast back to fp16 if needed
            if needs_upcasting:
                self.vae.to(dtype=torch.float16)
        else:
            image = latents

        if not output_type == "latent":
            # apply watermark if available
            if self.watermark is not None:
                image = self.watermark.apply_watermark(image)

            image = self.image_processor.postprocess(image, output_type=output_type)

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (image,)

        return StableDiffusionXLPipelineOutput(images=image)

    ### NEW: adapters ###
    def _init_custom_adapter(

        self,

        # Multi-view adapter

        num_views: int,

        self_attn_processor: Any = DecoupledMVRowSelfAttnProcessor2_0,

        # Condition encoder

        cond_in_channels: int = 6,

        # For training

        copy_attn_weights: bool = True,

        zero_init_module_keys: List[str] = [],

    ):
        # Condition encoder
        self.cond_encoder = T2IAdapter(
            in_channels=cond_in_channels,
            channels=(320, 640, 1280, 1280),
            num_res_blocks=2,
            downscale_factor=16,
            adapter_type="full_adapter_xl",
        )

        # set custom attn processor for multi-view attention and image cross-attention
        self.unet: UNet2DConditionModel
        set_unet_2d_condition_attn_processor(
            self.unet,
            set_self_attn_proc_func=lambda name, hs, cad, ap: self_attn_processor(
                query_dim=hs,
                inner_dim=hs,
                num_views=num_views,
                name=name,
                use_mv=True,
                use_ref=True,
            ),
        )

        # copy decoupled attention weights from original unet
        if copy_attn_weights:
            state_dict = self.unet.state_dict()
            for key in state_dict.keys():
                if "_mv" in key:
                    compatible_key = key.replace("_mv", "").replace("processor.", "")
                elif "_ref" in key:
                    compatible_key = key.replace("_ref", "").replace("processor.", "")
                else:
                    compatible_key = key

                is_zero_init_key = any([k in key for k in zero_init_module_keys])
                if is_zero_init_key:
                    state_dict[key] = torch.zeros_like(state_dict[compatible_key])
                else:
                    state_dict[key] = state_dict[compatible_key].clone()
            self.unet.load_state_dict(state_dict)

    def _load_custom_adapter(self, state_dict):
        self.unet.load_state_dict(state_dict, strict=False)
        self.cond_encoder.load_state_dict(state_dict, strict=False)

    def _save_custom_adapter(

        self,

        include_keys: Optional[List[str]] = None,

        exclude_keys: Optional[List[str]] = None,

    ):
        def include_fn(k):
            is_included = False

            if include_keys is not None:
                is_included = is_included or any([key in k for key in include_keys])
            if exclude_keys is not None:
                is_included = is_included and not any(
                    [key in k for key in exclude_keys]
                )

            return is_included

        state_dict = {k: v for k, v in self.unet.state_dict().items() if include_fn(k)}
        state_dict.update(self.cond_encoder.state_dict())

        return state_dict