Ashoka74's picture
Upload 25 files
fb5e185 verified
raw
history blame
6.99 kB
import math
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import torch
import torch.nn.functional as F
# import trimesh
from PIL import Image
from torch import BoolTensor, FloatTensor
LIST_TYPE = Union[list, np.ndarray, torch.Tensor]
def list_to_pt(
x: LIST_TYPE, dtype: Optional[torch.dtype] = None, device: Optional[str] = None
) -> torch.Tensor:
if isinstance(x, list) or isinstance(x, np.ndarray):
return torch.tensor(x, dtype=dtype, device=device)
return x.to(dtype=dtype)
def get_c2w(
elevation_deg: LIST_TYPE,
distance: LIST_TYPE,
azimuth_deg: Optional[LIST_TYPE],
num_views: Optional[int] = 1,
device: Optional[str] = None,
) -> torch.FloatTensor:
if azimuth_deg is None:
assert (
num_views is not None
), "num_views must be provided if azimuth_deg is None."
azimuth_deg = torch.linspace(
0, 360, num_views + 1, dtype=torch.float32, device=device
)[:-1]
else:
num_views = len(azimuth_deg)
azimuth_deg = list_to_pt(azimuth_deg, dtype=torch.float32, device=device)
elevation_deg = list_to_pt(elevation_deg, dtype=torch.float32, device=device)
camera_distances = list_to_pt(distance, dtype=torch.float32, device=device)
elevation = elevation_deg * math.pi / 180
azimuth = azimuth_deg * math.pi / 180
camera_positions = torch.stack(
[
camera_distances * torch.cos(elevation) * torch.cos(azimuth),
camera_distances * torch.cos(elevation) * torch.sin(azimuth),
camera_distances * torch.sin(elevation),
],
dim=-1,
)
center = torch.zeros_like(camera_positions)
up = torch.tensor([0, 0, 1], dtype=torch.float32, device=device)[None, :].repeat(
num_views, 1
)
lookat = F.normalize(center - camera_positions, dim=-1)
right = F.normalize(torch.cross(lookat, up, dim=-1), dim=-1)
up = F.normalize(torch.cross(right, lookat, dim=-1), dim=-1)
c2w3x4 = torch.cat(
[torch.stack([right, up, -lookat], dim=-1), camera_positions[:, :, None]],
dim=-1,
)
c2w = torch.cat([c2w3x4, torch.zeros_like(c2w3x4[:, :1])], dim=1)
c2w[:, 3, 3] = 1.0
return c2w
def get_projection_matrix(
fovy_deg: LIST_TYPE,
aspect_wh: float = 1.0,
near: float = 0.1,
far: float = 100.0,
device: Optional[str] = None,
) -> torch.FloatTensor:
fovy_deg = list_to_pt(fovy_deg, dtype=torch.float32, device=device)
batch_size = fovy_deg.shape[0]
fovy = fovy_deg * math.pi / 180
tan_half_fovy = torch.tan(fovy / 2)
projection_matrix = torch.zeros(
batch_size, 4, 4, dtype=torch.float32, device=device
)
projection_matrix[:, 0, 0] = 1 / (aspect_wh * tan_half_fovy)
projection_matrix[:, 1, 1] = -1 / tan_half_fovy
projection_matrix[:, 2, 2] = -(far + near) / (far - near)
projection_matrix[:, 2, 3] = -2 * far * near / (far - near)
projection_matrix[:, 3, 2] = -1
return projection_matrix
def get_orthogonal_projection_matrix(
batch_size: int,
left: float,
right: float,
bottom: float,
top: float,
near: float = 0.1,
far: float = 100.0,
device: Optional[str] = None,
) -> torch.FloatTensor:
projection_matrix = torch.zeros(
batch_size, 4, 4, dtype=torch.float32, device=device
)
projection_matrix[:, 0, 0] = 2 / (right - left)
projection_matrix[:, 1, 1] = -2 / (top - bottom)
projection_matrix[:, 2, 2] = -2 / (far - near)
projection_matrix[:, 0, 3] = -(right + left) / (right - left)
projection_matrix[:, 1, 3] = -(top + bottom) / (top - bottom)
projection_matrix[:, 2, 3] = -(far + near) / (far - near)
projection_matrix[:, 3, 3] = 1
return projection_matrix
@dataclass
class Camera:
c2w: Optional[torch.FloatTensor]
w2c: torch.FloatTensor
proj_mtx: torch.FloatTensor
mvp_mtx: torch.FloatTensor
cam_pos: Optional[torch.FloatTensor]
def __getitem__(self, index):
if isinstance(index, int):
sl = slice(index, index + 1)
elif isinstance(index, slice):
sl = index
else:
raise NotImplementedError
return Camera(
c2w=self.c2w[sl] if self.c2w is not None else None,
w2c=self.w2c[sl],
proj_mtx=self.proj_mtx[sl],
mvp_mtx=self.mvp_mtx[sl],
cam_pos=self.cam_pos[sl] if self.cam_pos is not None else None,
)
def to(self, device: Optional[str] = None):
if self.c2w is not None:
self.c2w = self.c2w.to(device)
self.w2c = self.w2c.to(device)
self.proj_mtx = self.proj_mtx.to(device)
self.mvp_mtx = self.mvp_mtx.to(device)
if self.cam_pos is not None:
self.cam_pos = self.cam_pos.to(device)
def __len__(self):
return self.c2w.shape[0]
def get_camera(
elevation_deg: Optional[LIST_TYPE] = None,
distance: Optional[LIST_TYPE] = None,
fovy_deg: Optional[LIST_TYPE] = None,
azimuth_deg: Optional[LIST_TYPE] = None,
num_views: Optional[int] = 1,
c2w: Optional[torch.FloatTensor] = None,
w2c: Optional[torch.FloatTensor] = None,
proj_mtx: Optional[torch.FloatTensor] = None,
aspect_wh: float = 1.0,
near: float = 0.1,
far: float = 100.0,
device: Optional[str] = None,
):
if w2c is None:
if c2w is None:
c2w = get_c2w(elevation_deg, distance, azimuth_deg, num_views, device)
camera_positions = c2w[:, :3, 3]
w2c = torch.linalg.inv(c2w)
else:
camera_positions = None
c2w = None
if proj_mtx is None:
proj_mtx = get_projection_matrix(
fovy_deg, aspect_wh=aspect_wh, near=near, far=far, device=device
)
mvp_mtx = proj_mtx @ w2c
return Camera(
c2w=c2w, w2c=w2c, proj_mtx=proj_mtx, mvp_mtx=mvp_mtx, cam_pos=camera_positions
)
def get_orthogonal_camera(
elevation_deg: LIST_TYPE,
distance: LIST_TYPE,
left: float,
right: float,
bottom: float,
top: float,
azimuth_deg: Optional[LIST_TYPE] = None,
num_views: Optional[int] = 1,
near: float = 0.1,
far: float = 100.0,
device: Optional[str] = None,
):
c2w = get_c2w(elevation_deg, distance, azimuth_deg, num_views, device)
camera_positions = c2w[:, :3, 3]
w2c = torch.linalg.inv(c2w)
proj_mtx = get_orthogonal_projection_matrix(
batch_size=c2w.shape[0],
left=left,
right=right,
bottom=bottom,
top=top,
near=near,
far=far,
device=device,
)
mvp_mtx = proj_mtx @ w2c
return Camera(
c2w=c2w, w2c=w2c, proj_mtx=proj_mtx, mvp_mtx=mvp_mtx, cam_pos=camera_positions
)