Ashoka74's picture
Update app.py
d59b17d verified
import spaces
import argparse
import random
import gradio as gr
import numpy as np
# import spaces
import torch
from torchvision import transforms
from transformers import AutoModelForImageSegmentation
from inference_i2mv_sdxl import prepare_pipeline, remove_bg, run_pipeline
# Device and dtype
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
# Hyperparameters
NUM_VIEWS = 6
HEIGHT = 768
WIDTH = 768
MAX_SEED = np.iinfo(np.int32).max
pipe = prepare_pipeline(
base_model="stabilityai/stable-diffusion-xl-base-1.0",
vae_model="madebyollin/sdxl-vae-fp16-fix",
unet_model=None,
lora_model=None,
adapter_path="huanngzh/mv-adapter",
scheduler=None,
num_views=NUM_VIEWS,
device=device,
dtype=dtype,
)
# remove bg
# birefnet = AutoModelForImageSegmentation.from_pretrained(
# "ZhengPeng7/BiRefNet", trust_remote_code=True
# )
# birefnet.to(device)
# transform_image = transforms.Compose(
# [
# transforms.Resize((1024, 1024)),
# transforms.ToTensor(),
# transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
# ]
# )
@spaces.GPU()
def infer(
prompt,
image,
do_rembg=False,
seed=42,
randomize_seed=False,
guidance_scale=3.0,
num_inference_steps=50,
reference_conditioning_scale=1.0,
negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast",
progress=gr.Progress(track_tqdm=True),
):
# if do_rembg:
# remove_bg_fn = lambda x: remove_bg(x, birefnet, transform_image, device)
# else:
# remove_bg_fn = None
if randomize_seed:
seed = random.randint(0, MAX_SEED)
images, preprocessed_image = run_pipeline(
pipe,
num_views=NUM_VIEWS,
text=prompt,
image=image,
height=HEIGHT,
width=WIDTH,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
seed=seed,
remove_bg_fn=None,
reference_conditioning_scale=reference_conditioning_scale,
negative_prompt=negative_prompt,
device=device,
)
return images
# examples = [
# [
# "A decorative figurine of a young anime-style girl",
# "assets/demo/i2mv/A_decorative_figurine_of_a_young_anime-style_girl.png",
# True,
# 21,
# ],
# [
# "A juvenile emperor penguin chick",
# "assets/demo/i2mv/A_juvenile_emperor_penguin_chick.png",
# True,
# 0,
# ],
# [
# "A striped tabby cat with white fur sitting upright",
# "assets/demo/i2mv/A_striped_tabby_cat_with_white_fur_sitting_upright.png",
# True,
# 0,
# ],
# ]
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown(
f"""# MV-Adapter [Image-to-Multi-View]
Generate 768x768 multi-view images from a single image using SDXL <br>
[[page](https://huanngzh.github.io/MV-Adapter-Page/)] [[repo](https://github.com/huanngzh/MV-Adapter)]
"""
)
with gr.Row():
with gr.Column():
with gr.Row():
input_image = gr.Image(
label="Input Image",
sources=["upload", "webcam", "clipboard"],
type="pil",
)
preprocessed_image = gr.Image(label="Preprocessed Image", type="pil")
prompt = gr.Textbox(
label="Prompt", placeholder="Enter your prompt", value="high quality"
)
# do_rembg = gr.Checkbox(label="Remove background", value=True)
run_button = gr.Button("Run")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=50,
)
with gr.Row():
guidance_scale = gr.Slider(
label="CFG scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=3.0,
)
with gr.Row():
reference_conditioning_scale = gr.Slider(
label="Image conditioning scale",
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.0,
)
with gr.Row():
negative_prompt = gr.Textbox(
label="Negative prompt",
placeholder="Enter your negative prompt",
value="watermark, ugly, deformed, noisy, blurry, low contrast",
)
def use_orientation(selected_image:gr.SelectData):
return selected_image.value['image']['path']
# def add_orientation(imgs, index):
# index = int(index)
# return imgs[index]
# def get_image_by_index(imgs, index):
# """
# Retrieves the image from the imgs list based on the provided index.
# """
# try:
# index = int(index)
# if 0 <= index < len(imgs):
# return imgs[index]
# else:
# return None # Or return a placeholder image
# except (ValueError, TypeError):
# return None # Or return a placeholder image
# def set_slider_index(selected_image):
# return selected_image.index
# imgs = gr.State()
with gr.Column():
result = gr.Gallery(
label="Result",
show_label=False,
columns=[3],
rows=[2],
object_fit="contain",
height="auto",
allow_preview=False,
)
if result:
# Slider to select image index
# slider = gr.Slider(
# minimum=0,
# maximum=5,
# step=1,
# label="Select Image Index",
# value=0, # Default value
# interactive=True
# )
input_fg = gr.Image(type="numpy", label="Selected Image", height=480)
selected = gr.Number(visible=True)
result.select(use_orientation, inputs=None, outputs=input_fg)
# add_button = gr.Button("Select orientation for processing")
# add_button.click(add_orientation, [imgs, selected], input_fg)
# result.select(
# fn=set_slider_index,
# inputs=result,
# outputs=slider
# )
# slider.change(
# fn=use_orientation,
# inputs=[result, slider],
# outputs=input_fg
# )
# with gr.Row():
# gr.Examples(
# examples=examples,
# fn=infer,
# inputs=[prompt, input_image, do_rembg, seed],
# outputs=[result, preprocessed_image, seed],
# cache_examples=True,
# )
run_button.click(fn=infer,
inputs=[
prompt,
input_image,
],
outputs=[result],
)
demo.launch()