Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -34,25 +34,12 @@ pipe = prepare_pipeline(
|
|
34 |
dtype=dtype,
|
35 |
)
|
36 |
|
37 |
-
# remove bg
|
38 |
-
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
39 |
-
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
40 |
-
)
|
41 |
-
birefnet.to(device)
|
42 |
-
transform_image = transforms.Compose(
|
43 |
-
[
|
44 |
-
transforms.Resize((1024, 1024)),
|
45 |
-
transforms.ToTensor(),
|
46 |
-
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
47 |
-
]
|
48 |
-
)
|
49 |
-
|
50 |
|
51 |
@spaces.GPU()
|
52 |
def infer(
|
53 |
prompt,
|
54 |
image,
|
55 |
-
do_rembg=
|
56 |
seed=42,
|
57 |
randomize_seed=False,
|
58 |
guidance_scale=3.0,
|
@@ -61,10 +48,6 @@ def infer(
|
|
61 |
negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast",
|
62 |
progress=gr.Progress(track_tqdm=True),
|
63 |
):
|
64 |
-
if do_rembg:
|
65 |
-
remove_bg_fn = lambda x: remove_bg(x, birefnet, transform_image, device)
|
66 |
-
else:
|
67 |
-
remove_bg_fn = None
|
68 |
if randomize_seed:
|
69 |
seed = random.randint(0, MAX_SEED)
|
70 |
images, preprocessed_image = run_pipeline(
|
@@ -77,12 +60,12 @@ def infer(
|
|
77 |
num_inference_steps=num_inference_steps,
|
78 |
guidance_scale=guidance_scale,
|
79 |
seed=seed,
|
80 |
-
remove_bg_fn=
|
81 |
reference_conditioning_scale=reference_conditioning_scale,
|
82 |
negative_prompt=negative_prompt,
|
83 |
device=device,
|
84 |
)
|
85 |
-
return images
|
86 |
|
87 |
|
88 |
# examples = [
|
|
|
34 |
dtype=dtype,
|
35 |
)
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
@spaces.GPU()
|
39 |
def infer(
|
40 |
prompt,
|
41 |
image,
|
42 |
+
do_rembg=False,
|
43 |
seed=42,
|
44 |
randomize_seed=False,
|
45 |
guidance_scale=3.0,
|
|
|
48 |
negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast",
|
49 |
progress=gr.Progress(track_tqdm=True),
|
50 |
):
|
|
|
|
|
|
|
|
|
51 |
if randomize_seed:
|
52 |
seed = random.randint(0, MAX_SEED)
|
53 |
images, preprocessed_image = run_pipeline(
|
|
|
60 |
num_inference_steps=num_inference_steps,
|
61 |
guidance_scale=guidance_scale,
|
62 |
seed=seed,
|
63 |
+
remove_bg_fn=None,
|
64 |
reference_conditioning_scale=reference_conditioning_scale,
|
65 |
negative_prompt=negative_prompt,
|
66 |
device=device,
|
67 |
)
|
68 |
+
return images
|
69 |
|
70 |
|
71 |
# examples = [
|