import argparse import random import gradio as gr import numpy as np # import spaces import torch from torchvision import transforms from transformers import AutoModelForImageSegmentation from .inference_i2mv_sdxl import prepare_pipeline, remove_bg, run_pipeline # Device and dtype dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" # Hyperparameters NUM_VIEWS = 6 HEIGHT = 768 WIDTH = 768 MAX_SEED = np.iinfo(np.int32).max pipe = prepare_pipeline( base_model="stabilityai/stable-diffusion-xl-base-1.0", vae_model="madebyollin/sdxl-vae-fp16-fix", unet_model=None, lora_model=None, adapter_path="huanngzh/mv-adapter", scheduler=None, num_views=NUM_VIEWS, device=device, dtype=dtype, ) # remove bg birefnet = AutoModelForImageSegmentation.from_pretrained( "ZhengPeng7/BiRefNet", trust_remote_code=True ) birefnet.to(device) transform_image = transforms.Compose( [ transforms.Resize((1024, 1024)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) # @spaces.GPU() def infer( prompt, image, do_rembg=True, seed=42, randomize_seed=False, guidance_scale=3.0, num_inference_steps=50, reference_conditioning_scale=1.0, negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast", progress=gr.Progress(track_tqdm=True), ): if do_rembg: remove_bg_fn = lambda x: remove_bg(x, birefnet, transform_image, device) else: remove_bg_fn = None if randomize_seed: seed = random.randint(0, MAX_SEED) images, preprocessed_image = run_pipeline( pipe, num_views=NUM_VIEWS, text=prompt, image=image, height=HEIGHT, width=WIDTH, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, seed=seed, remove_bg_fn=remove_bg_fn, reference_conditioning_scale=reference_conditioning_scale, negative_prompt=negative_prompt, device=device, ) return images, preprocessed_image, seed examples = [ [ "A decorative figurine of a young anime-style girl", "assets/demo/i2mv/A_decorative_figurine_of_a_young_anime-style_girl.png", True, 21, ], [ "A juvenile emperor penguin chick", "assets/demo/i2mv/A_juvenile_emperor_penguin_chick.png", True, 0, ], [ "A striped tabby cat with white fur sitting upright", "assets/demo/i2mv/A_striped_tabby_cat_with_white_fur_sitting_upright.png", True, 0, ], ] with gr.Blocks() as demo: with gr.Row(): gr.Markdown( f"""# MV-Adapter [Image-to-Multi-View] Generate 768x768 multi-view images from a single image using SDXL
[[page](https://huanngzh.github.io/MV-Adapter-Page/)] [[repo](https://github.com/huanngzh/MV-Adapter)] """ ) with gr.Row(): with gr.Column(): with gr.Row(): input_image = gr.Image( label="Input Image", sources=["upload", "webcam", "clipboard"], type="pil", ) preprocessed_image = gr.Image(label="Preprocessed Image", type="pil") prompt = gr.Textbox( label="Prompt", placeholder="Enter your prompt", value="high quality" ) do_rembg = gr.Checkbox(label="Remove background", value=True) run_button = gr.Button("Run") with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=50, ) with gr.Row(): guidance_scale = gr.Slider( label="CFG scale", minimum=0.0, maximum=10.0, step=0.1, value=3.0, ) with gr.Row(): reference_conditioning_scale = gr.Slider( label="Image conditioning scale", minimum=0.0, maximum=2.0, step=0.1, value=1.0, ) with gr.Row(): negative_prompt = gr.Textbox( label="Negative prompt", placeholder="Enter your negative prompt", value="watermark, ugly, deformed, noisy, blurry, low contrast", ) with gr.Column(): result = gr.Gallery( label="Result", show_label=False, columns=[3], rows=[2], object_fit="contain", height="auto", ) with gr.Row(): gr.Examples( examples=examples, fn=infer, inputs=[prompt, input_image, do_rembg, seed], outputs=[result, preprocessed_image, seed], cache_examples=True, ) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ prompt, input_image, do_rembg, seed, randomize_seed, guidance_scale, num_inference_steps, reference_conditioning_scale, negative_prompt, ], outputs=[result, preprocessed_image, seed], ) demo.launch()