Spaces:
Sleeping
Sleeping
File size: 31,998 Bytes
4450790 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 |
import math
import torch
import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange, repeat
from typing import Optional
import logging
from .diffusionmodules.util import AlphaBlender, timestep_embedding
from .sub_quadratic_attention import efficient_dot_product_attention
from comfy import model_management
if model_management.xformers_enabled():
import xformers
import xformers.ops
from comfy.cli_args import args
import comfy.ops
ops = comfy.ops.disable_weight_init
FORCE_UPCAST_ATTENTION_DTYPE = model_management.force_upcast_attention_dtype()
def get_attn_precision(attn_precision):
if args.dont_upcast_attention:
return None
if FORCE_UPCAST_ATTENTION_DTYPE is not None:
return FORCE_UPCAST_ATTENTION_DTYPE
return attn_precision
def exists(val):
return val is not None
def uniq(arr):
return{el: True for el in arr}.keys()
def default(val, d):
if exists(val):
return val
return d
def max_neg_value(t):
return -torch.finfo(t.dtype).max
def init_(tensor):
dim = tensor.shape[-1]
std = 1 / math.sqrt(dim)
tensor.uniform_(-std, std)
return tensor
# feedforward
class GEGLU(nn.Module):
def __init__(self, dim_in, dim_out, dtype=None, device=None, operations=ops):
super().__init__()
self.proj = operations.Linear(dim_in, dim_out * 2, dtype=dtype, device=device)
def forward(self, x):
x, gate = self.proj(x).chunk(2, dim=-1)
return x * F.gelu(gate)
class FeedForward(nn.Module):
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0., dtype=None, device=None, operations=ops):
super().__init__()
inner_dim = int(dim * mult)
dim_out = default(dim_out, dim)
project_in = nn.Sequential(
operations.Linear(dim, inner_dim, dtype=dtype, device=device),
nn.GELU()
) if not glu else GEGLU(dim, inner_dim, dtype=dtype, device=device, operations=operations)
self.net = nn.Sequential(
project_in,
nn.Dropout(dropout),
operations.Linear(inner_dim, dim_out, dtype=dtype, device=device)
)
def forward(self, x):
return self.net(x)
def Normalize(in_channels, dtype=None, device=None):
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
def attention_basic(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False):
attn_precision = get_attn_precision(attn_precision)
if skip_reshape:
b, _, _, dim_head = q.shape
else:
b, _, dim_head = q.shape
dim_head //= heads
scale = dim_head ** -0.5
h = heads
if skip_reshape:
q, k, v = map(
lambda t: t.reshape(b * heads, -1, dim_head),
(q, k, v),
)
else:
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(b, -1, heads, dim_head)
.permute(0, 2, 1, 3)
.reshape(b * heads, -1, dim_head)
.contiguous(),
(q, k, v),
)
# force cast to fp32 to avoid overflowing
if attn_precision == torch.float32:
sim = einsum('b i d, b j d -> b i j', q.float(), k.float()) * scale
else:
sim = einsum('b i d, b j d -> b i j', q, k) * scale
del q, k
if exists(mask):
if mask.dtype == torch.bool:
mask = rearrange(mask, 'b ... -> b (...)') #TODO: check if this bool part matches pytorch attention
max_neg_value = -torch.finfo(sim.dtype).max
mask = repeat(mask, 'b j -> (b h) () j', h=h)
sim.masked_fill_(~mask, max_neg_value)
else:
if len(mask.shape) == 2:
bs = 1
else:
bs = mask.shape[0]
mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1])
sim.add_(mask)
# attention, what we cannot get enough of
sim = sim.softmax(dim=-1)
out = einsum('b i j, b j d -> b i d', sim.to(v.dtype), v)
out = (
out.unsqueeze(0)
.reshape(b, heads, -1, dim_head)
.permute(0, 2, 1, 3)
.reshape(b, -1, heads * dim_head)
)
return out
def attention_sub_quad(query, key, value, heads, mask=None, attn_precision=None, skip_reshape=False):
attn_precision = get_attn_precision(attn_precision)
if skip_reshape:
b, _, _, dim_head = query.shape
else:
b, _, dim_head = query.shape
dim_head //= heads
scale = dim_head ** -0.5
if skip_reshape:
query = query.reshape(b * heads, -1, dim_head)
value = value.reshape(b * heads, -1, dim_head)
key = key.reshape(b * heads, -1, dim_head).movedim(1, 2)
else:
query = query.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head)
value = value.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head)
key = key.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 3, 1).reshape(b * heads, dim_head, -1)
dtype = query.dtype
upcast_attention = attn_precision == torch.float32 and query.dtype != torch.float32
if upcast_attention:
bytes_per_token = torch.finfo(torch.float32).bits//8
else:
bytes_per_token = torch.finfo(query.dtype).bits//8
batch_x_heads, q_tokens, _ = query.shape
_, _, k_tokens = key.shape
qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens
mem_free_total, mem_free_torch = model_management.get_free_memory(query.device, True)
kv_chunk_size_min = None
kv_chunk_size = None
query_chunk_size = None
for x in [4096, 2048, 1024, 512, 256]:
count = mem_free_total / (batch_x_heads * bytes_per_token * x * 4.0)
if count >= k_tokens:
kv_chunk_size = k_tokens
query_chunk_size = x
break
if query_chunk_size is None:
query_chunk_size = 512
if mask is not None:
if len(mask.shape) == 2:
bs = 1
else:
bs = mask.shape[0]
mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1])
hidden_states = efficient_dot_product_attention(
query,
key,
value,
query_chunk_size=query_chunk_size,
kv_chunk_size=kv_chunk_size,
kv_chunk_size_min=kv_chunk_size_min,
use_checkpoint=False,
upcast_attention=upcast_attention,
mask=mask,
)
hidden_states = hidden_states.to(dtype)
hidden_states = hidden_states.unflatten(0, (-1, heads)).transpose(1,2).flatten(start_dim=2)
return hidden_states
def attention_split(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False):
attn_precision = get_attn_precision(attn_precision)
if skip_reshape:
b, _, _, dim_head = q.shape
else:
b, _, dim_head = q.shape
dim_head //= heads
scale = dim_head ** -0.5
h = heads
if skip_reshape:
q, k, v = map(
lambda t: t.reshape(b * heads, -1, dim_head),
(q, k, v),
)
else:
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(b, -1, heads, dim_head)
.permute(0, 2, 1, 3)
.reshape(b * heads, -1, dim_head)
.contiguous(),
(q, k, v),
)
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
mem_free_total = model_management.get_free_memory(q.device)
if attn_precision == torch.float32:
element_size = 4
upcast = True
else:
element_size = q.element_size()
upcast = False
gb = 1024 ** 3
tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * element_size
modifier = 3
mem_required = tensor_size * modifier
steps = 1
if mem_required > mem_free_total:
steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
# print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
# f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")
if steps > 64:
max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
f'Need: {mem_required/64/gb:0.1f}GB free, Have:{mem_free_total/gb:0.1f}GB free')
if mask is not None:
if len(mask.shape) == 2:
bs = 1
else:
bs = mask.shape[0]
mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1])
# print("steps", steps, mem_required, mem_free_total, modifier, q.element_size(), tensor_size)
first_op_done = False
cleared_cache = False
while True:
try:
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
for i in range(0, q.shape[1], slice_size):
end = i + slice_size
if upcast:
with torch.autocast(enabled=False, device_type = 'cuda'):
s1 = einsum('b i d, b j d -> b i j', q[:, i:end].float(), k.float()) * scale
else:
s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * scale
if mask is not None:
if len(mask.shape) == 2:
s1 += mask[i:end]
else:
if mask.shape[1] == 1:
s1 += mask
else:
s1 += mask[:, i:end]
s2 = s1.softmax(dim=-1).to(v.dtype)
del s1
first_op_done = True
r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
del s2
break
except model_management.OOM_EXCEPTION as e:
if first_op_done == False:
model_management.soft_empty_cache(True)
if cleared_cache == False:
cleared_cache = True
logging.warning("out of memory error, emptying cache and trying again")
continue
steps *= 2
if steps > 64:
raise e
logging.warning("out of memory error, increasing steps and trying again {}".format(steps))
else:
raise e
del q, k, v
r1 = (
r1.unsqueeze(0)
.reshape(b, heads, -1, dim_head)
.permute(0, 2, 1, 3)
.reshape(b, -1, heads * dim_head)
)
return r1
BROKEN_XFORMERS = False
try:
x_vers = xformers.__version__
# XFormers bug confirmed on all versions from 0.0.21 to 0.0.26 (q with bs bigger than 65535 gives CUDA error)
BROKEN_XFORMERS = x_vers.startswith("0.0.2") and not x_vers.startswith("0.0.20")
except:
pass
def attention_xformers(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False):
if skip_reshape:
b, _, _, dim_head = q.shape
else:
b, _, dim_head = q.shape
dim_head //= heads
disabled_xformers = False
if BROKEN_XFORMERS:
if b * heads > 65535:
disabled_xformers = True
if not disabled_xformers:
if torch.jit.is_tracing() or torch.jit.is_scripting():
disabled_xformers = True
if disabled_xformers:
return attention_pytorch(q, k, v, heads, mask, skip_reshape=skip_reshape)
if skip_reshape:
q, k, v = map(
lambda t: t.reshape(b * heads, -1, dim_head),
(q, k, v),
)
else:
q, k, v = map(
lambda t: t.reshape(b, -1, heads, dim_head),
(q, k, v),
)
if mask is not None:
pad = 8 - mask.shape[-1] % 8
mask_out = torch.empty([q.shape[0], q.shape[2], q.shape[1], mask.shape[-1] + pad], dtype=q.dtype, device=q.device)
mask_out[..., :mask.shape[-1]] = mask
mask = mask_out[..., :mask.shape[-1]]
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=mask)
if skip_reshape:
out = (
out.unsqueeze(0)
.reshape(b, heads, -1, dim_head)
.permute(0, 2, 1, 3)
.reshape(b, -1, heads * dim_head)
)
else:
out = (
out.reshape(b, -1, heads * dim_head)
)
return out
if model_management.is_nvidia(): #pytorch 2.3 and up seem to have this issue.
SDP_BATCH_LIMIT = 2**15
else:
#TODO: other GPUs ?
SDP_BATCH_LIMIT = 2**31
def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False):
if skip_reshape:
b, _, _, dim_head = q.shape
else:
b, _, dim_head = q.shape
dim_head //= heads
q, k, v = map(
lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2),
(q, k, v),
)
if SDP_BATCH_LIMIT >= q.shape[0]:
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
out = (
out.transpose(1, 2).reshape(b, -1, heads * dim_head)
)
else:
out = torch.empty((q.shape[0], q.shape[2], heads * dim_head), dtype=q.dtype, layout=q.layout, device=q.device)
for i in range(0, q.shape[0], SDP_BATCH_LIMIT):
out[i : i + SDP_BATCH_LIMIT] = torch.nn.functional.scaled_dot_product_attention(q[i : i + SDP_BATCH_LIMIT], k[i : i + SDP_BATCH_LIMIT], v[i : i + SDP_BATCH_LIMIT], attn_mask=mask, dropout_p=0.0, is_causal=False).transpose(1, 2).reshape(-1, q.shape[2], heads * dim_head)
return out
optimized_attention = attention_basic
if model_management.xformers_enabled():
logging.info("Using xformers cross attention")
optimized_attention = attention_xformers
elif model_management.pytorch_attention_enabled():
logging.info("Using pytorch cross attention")
optimized_attention = attention_pytorch
else:
if args.use_split_cross_attention:
logging.info("Using split optimization for cross attention")
optimized_attention = attention_split
else:
logging.info("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention")
optimized_attention = attention_sub_quad
optimized_attention_masked = optimized_attention
def optimized_attention_for_device(device, mask=False, small_input=False):
if small_input:
if model_management.pytorch_attention_enabled():
return attention_pytorch #TODO: need to confirm but this is probably slightly faster for small inputs in all cases
else:
return attention_basic
if device == torch.device("cpu"):
return attention_sub_quad
if mask:
return optimized_attention_masked
return optimized_attention
class CrossAttention(nn.Module):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., attn_precision=None, dtype=None, device=None, operations=ops):
super().__init__()
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
self.attn_precision = attn_precision
self.heads = heads
self.dim_head = dim_head
self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
def forward(self, x, context=None, value=None, mask=None):
q = self.to_q(x)
context = default(context, x)
k = self.to_k(context)
if value is not None:
v = self.to_v(value)
del value
else:
v = self.to_v(context)
if mask is None:
out = optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision)
else:
out = optimized_attention_masked(q, k, v, self.heads, mask, attn_precision=self.attn_precision)
return self.to_out(out)
class BasicTransformerBlock(nn.Module):
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, ff_in=False, inner_dim=None,
disable_self_attn=False, disable_temporal_crossattention=False, switch_temporal_ca_to_sa=False, attn_precision=None, dtype=None, device=None, operations=ops):
super().__init__()
self.ff_in = ff_in or inner_dim is not None
if inner_dim is None:
inner_dim = dim
self.is_res = inner_dim == dim
self.attn_precision = attn_precision
if self.ff_in:
self.norm_in = operations.LayerNorm(dim, dtype=dtype, device=device)
self.ff_in = FeedForward(dim, dim_out=inner_dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations)
self.disable_self_attn = disable_self_attn
self.attn1 = CrossAttention(query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout,
context_dim=context_dim if self.disable_self_attn else None, attn_precision=self.attn_precision, dtype=dtype, device=device, operations=operations) # is a self-attention if not self.disable_self_attn
self.ff = FeedForward(inner_dim, dim_out=dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations)
if disable_temporal_crossattention:
if switch_temporal_ca_to_sa:
raise ValueError
else:
self.attn2 = None
else:
context_dim_attn2 = None
if not switch_temporal_ca_to_sa:
context_dim_attn2 = context_dim
self.attn2 = CrossAttention(query_dim=inner_dim, context_dim=context_dim_attn2,
heads=n_heads, dim_head=d_head, dropout=dropout, attn_precision=self.attn_precision, dtype=dtype, device=device, operations=operations) # is self-attn if context is none
self.norm2 = operations.LayerNorm(inner_dim, dtype=dtype, device=device)
self.norm1 = operations.LayerNorm(inner_dim, dtype=dtype, device=device)
self.norm3 = operations.LayerNorm(inner_dim, dtype=dtype, device=device)
self.n_heads = n_heads
self.d_head = d_head
self.switch_temporal_ca_to_sa = switch_temporal_ca_to_sa
def forward(self, x, context=None, transformer_options={}):
extra_options = {}
block = transformer_options.get("block", None)
block_index = transformer_options.get("block_index", 0)
transformer_patches = {}
transformer_patches_replace = {}
for k in transformer_options:
if k == "patches":
transformer_patches = transformer_options[k]
elif k == "patches_replace":
transformer_patches_replace = transformer_options[k]
else:
extra_options[k] = transformer_options[k]
extra_options["n_heads"] = self.n_heads
extra_options["dim_head"] = self.d_head
extra_options["attn_precision"] = self.attn_precision
if self.ff_in:
x_skip = x
x = self.ff_in(self.norm_in(x))
if self.is_res:
x += x_skip
n = self.norm1(x)
if self.disable_self_attn:
context_attn1 = context
else:
context_attn1 = None
value_attn1 = None
if "attn1_patch" in transformer_patches:
patch = transformer_patches["attn1_patch"]
if context_attn1 is None:
context_attn1 = n
value_attn1 = context_attn1
for p in patch:
n, context_attn1, value_attn1 = p(n, context_attn1, value_attn1, extra_options)
if block is not None:
transformer_block = (block[0], block[1], block_index)
else:
transformer_block = None
attn1_replace_patch = transformer_patches_replace.get("attn1", {})
block_attn1 = transformer_block
if block_attn1 not in attn1_replace_patch:
block_attn1 = block
if block_attn1 in attn1_replace_patch:
if context_attn1 is None:
context_attn1 = n
value_attn1 = n
n = self.attn1.to_q(n)
context_attn1 = self.attn1.to_k(context_attn1)
value_attn1 = self.attn1.to_v(value_attn1)
n = attn1_replace_patch[block_attn1](n, context_attn1, value_attn1, extra_options)
n = self.attn1.to_out(n)
else:
n = self.attn1(n, context=context_attn1, value=value_attn1)
if "attn1_output_patch" in transformer_patches:
patch = transformer_patches["attn1_output_patch"]
for p in patch:
n = p(n, extra_options)
x += n
if "middle_patch" in transformer_patches:
patch = transformer_patches["middle_patch"]
for p in patch:
x = p(x, extra_options)
if self.attn2 is not None:
n = self.norm2(x)
if self.switch_temporal_ca_to_sa:
context_attn2 = n
else:
context_attn2 = context
value_attn2 = None
if "attn2_patch" in transformer_patches:
patch = transformer_patches["attn2_patch"]
value_attn2 = context_attn2
for p in patch:
n, context_attn2, value_attn2 = p(n, context_attn2, value_attn2, extra_options)
attn2_replace_patch = transformer_patches_replace.get("attn2", {})
block_attn2 = transformer_block
if block_attn2 not in attn2_replace_patch:
block_attn2 = block
if block_attn2 in attn2_replace_patch:
if value_attn2 is None:
value_attn2 = context_attn2
n = self.attn2.to_q(n)
context_attn2 = self.attn2.to_k(context_attn2)
value_attn2 = self.attn2.to_v(value_attn2)
n = attn2_replace_patch[block_attn2](n, context_attn2, value_attn2, extra_options)
n = self.attn2.to_out(n)
else:
n = self.attn2(n, context=context_attn2, value=value_attn2)
if "attn2_output_patch" in transformer_patches:
patch = transformer_patches["attn2_output_patch"]
for p in patch:
n = p(n, extra_options)
x += n
if self.is_res:
x_skip = x
x = self.ff(self.norm3(x))
if self.is_res:
x += x_skip
return x
class SpatialTransformer(nn.Module):
"""
Transformer block for image-like data.
First, project the input (aka embedding)
and reshape to b, t, d.
Then apply standard transformer action.
Finally, reshape to image
NEW: use_linear for more efficiency instead of the 1x1 convs
"""
def __init__(self, in_channels, n_heads, d_head,
depth=1, dropout=0., context_dim=None,
disable_self_attn=False, use_linear=False,
use_checkpoint=True, attn_precision=None, dtype=None, device=None, operations=ops):
super().__init__()
if exists(context_dim) and not isinstance(context_dim, list):
context_dim = [context_dim] * depth
self.in_channels = in_channels
inner_dim = n_heads * d_head
self.norm = operations.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
if not use_linear:
self.proj_in = operations.Conv2d(in_channels,
inner_dim,
kernel_size=1,
stride=1,
padding=0, dtype=dtype, device=device)
else:
self.proj_in = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device)
self.transformer_blocks = nn.ModuleList(
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
disable_self_attn=disable_self_attn, checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=dtype, device=device, operations=operations)
for d in range(depth)]
)
if not use_linear:
self.proj_out = operations.Conv2d(inner_dim,in_channels,
kernel_size=1,
stride=1,
padding=0, dtype=dtype, device=device)
else:
self.proj_out = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device)
self.use_linear = use_linear
def forward(self, x, context=None, transformer_options={}):
# note: if no context is given, cross-attention defaults to self-attention
if not isinstance(context, list):
context = [context] * len(self.transformer_blocks)
b, c, h, w = x.shape
x_in = x
x = self.norm(x)
if not self.use_linear:
x = self.proj_in(x)
x = x.movedim(1, 3).flatten(1, 2).contiguous()
if self.use_linear:
x = self.proj_in(x)
for i, block in enumerate(self.transformer_blocks):
transformer_options["block_index"] = i
x = block(x, context=context[i], transformer_options=transformer_options)
if self.use_linear:
x = self.proj_out(x)
x = x.reshape(x.shape[0], h, w, x.shape[-1]).movedim(3, 1).contiguous()
if not self.use_linear:
x = self.proj_out(x)
return x + x_in
class SpatialVideoTransformer(SpatialTransformer):
def __init__(
self,
in_channels,
n_heads,
d_head,
depth=1,
dropout=0.0,
use_linear=False,
context_dim=None,
use_spatial_context=False,
timesteps=None,
merge_strategy: str = "fixed",
merge_factor: float = 0.5,
time_context_dim=None,
ff_in=False,
checkpoint=False,
time_depth=1,
disable_self_attn=False,
disable_temporal_crossattention=False,
max_time_embed_period: int = 10000,
attn_precision=None,
dtype=None, device=None, operations=ops
):
super().__init__(
in_channels,
n_heads,
d_head,
depth=depth,
dropout=dropout,
use_checkpoint=checkpoint,
context_dim=context_dim,
use_linear=use_linear,
disable_self_attn=disable_self_attn,
attn_precision=attn_precision,
dtype=dtype, device=device, operations=operations
)
self.time_depth = time_depth
self.depth = depth
self.max_time_embed_period = max_time_embed_period
time_mix_d_head = d_head
n_time_mix_heads = n_heads
time_mix_inner_dim = int(time_mix_d_head * n_time_mix_heads)
inner_dim = n_heads * d_head
if use_spatial_context:
time_context_dim = context_dim
self.time_stack = nn.ModuleList(
[
BasicTransformerBlock(
inner_dim,
n_time_mix_heads,
time_mix_d_head,
dropout=dropout,
context_dim=time_context_dim,
# timesteps=timesteps,
checkpoint=checkpoint,
ff_in=ff_in,
inner_dim=time_mix_inner_dim,
disable_self_attn=disable_self_attn,
disable_temporal_crossattention=disable_temporal_crossattention,
attn_precision=attn_precision,
dtype=dtype, device=device, operations=operations
)
for _ in range(self.depth)
]
)
assert len(self.time_stack) == len(self.transformer_blocks)
self.use_spatial_context = use_spatial_context
self.in_channels = in_channels
time_embed_dim = self.in_channels * 4
self.time_pos_embed = nn.Sequential(
operations.Linear(self.in_channels, time_embed_dim, dtype=dtype, device=device),
nn.SiLU(),
operations.Linear(time_embed_dim, self.in_channels, dtype=dtype, device=device),
)
self.time_mixer = AlphaBlender(
alpha=merge_factor, merge_strategy=merge_strategy
)
def forward(
self,
x: torch.Tensor,
context: Optional[torch.Tensor] = None,
time_context: Optional[torch.Tensor] = None,
timesteps: Optional[int] = None,
image_only_indicator: Optional[torch.Tensor] = None,
transformer_options={}
) -> torch.Tensor:
_, _, h, w = x.shape
x_in = x
spatial_context = None
if exists(context):
spatial_context = context
if self.use_spatial_context:
assert (
context.ndim == 3
), f"n dims of spatial context should be 3 but are {context.ndim}"
if time_context is None:
time_context = context
time_context_first_timestep = time_context[::timesteps]
time_context = repeat(
time_context_first_timestep, "b ... -> (b n) ...", n=h * w
)
elif time_context is not None and not self.use_spatial_context:
time_context = repeat(time_context, "b ... -> (b n) ...", n=h * w)
if time_context.ndim == 2:
time_context = rearrange(time_context, "b c -> b 1 c")
x = self.norm(x)
if not self.use_linear:
x = self.proj_in(x)
x = rearrange(x, "b c h w -> b (h w) c")
if self.use_linear:
x = self.proj_in(x)
num_frames = torch.arange(timesteps, device=x.device)
num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps)
num_frames = rearrange(num_frames, "b t -> (b t)")
t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False, max_period=self.max_time_embed_period).to(x.dtype)
emb = self.time_pos_embed(t_emb)
emb = emb[:, None, :]
for it_, (block, mix_block) in enumerate(
zip(self.transformer_blocks, self.time_stack)
):
transformer_options["block_index"] = it_
x = block(
x,
context=spatial_context,
transformer_options=transformer_options,
)
x_mix = x
x_mix = x_mix + emb
B, S, C = x_mix.shape
x_mix = rearrange(x_mix, "(b t) s c -> (b s) t c", t=timesteps)
x_mix = mix_block(x_mix, context=time_context) #TODO: transformer_options
x_mix = rearrange(
x_mix, "(b s) t c -> (b t) s c", s=S, b=B // timesteps, c=C, t=timesteps
)
x = self.time_mixer(x_spatial=x, x_temporal=x_mix, image_only_indicator=image_only_indicator)
if self.use_linear:
x = self.proj_out(x)
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
if not self.use_linear:
x = self.proj_out(x)
out = x + x_in
return out
|