Spaces:
Sleeping
Sleeping
File size: 6,997 Bytes
4450790 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
from typing import TypedDict
import torch
import torchaudio
class AudioDict(TypedDict):
"""Comfy's representation of AUDIO data."""
sample_rate: int
waveform: torch.Tensor
AudioData = AudioDict | list[AudioDict]
class MtbAudio:
"""Base class for audio processing."""
@classmethod
def is_stereo(
cls,
audios: AudioData,
) -> bool:
if isinstance(audios, list):
return any(cls.is_stereo(audio) for audio in audios)
else:
return audios["waveform"].shape[1] == 2
@staticmethod
def resample(audio: AudioDict, common_sample_rate: int) -> AudioDict:
if audio["sample_rate"] != common_sample_rate:
resampler = torchaudio.transforms.Resample(
orig_freq=audio["sample_rate"], new_freq=common_sample_rate
)
return {
"sample_rate": common_sample_rate,
"waveform": resampler(audio["waveform"]),
}
else:
return audio
@staticmethod
def to_stereo(audio: AudioDict) -> AudioDict:
if audio["waveform"].shape[1] == 1:
return {
"sample_rate": audio["sample_rate"],
"waveform": torch.cat(
[audio["waveform"], audio["waveform"]], dim=1
),
}
else:
return audio
@classmethod
def preprocess_audios(
cls, audios: list[AudioDict]
) -> tuple[list[AudioDict], bool, int]:
max_sample_rate = max([audio["sample_rate"] for audio in audios])
resampled_audios = [
cls.resample(audio, max_sample_rate) for audio in audios
]
is_stereo = cls.is_stereo(audios)
if is_stereo:
audios = [cls.to_stereo(audio) for audio in resampled_audios]
return (audios, is_stereo, max_sample_rate)
class MTB_AudioCut(MtbAudio):
"""Basic audio cutter, values are in ms."""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"audio": ("AUDIO",),
"length": (
("FLOAT"),
{
"default": 1000.0,
"min": 0.0,
"max": 999999.0,
"step": 1,
},
),
"offset": (
("FLOAT"),
{"default": 0.0, "min": 0.0, "max": 999999.0, "step": 1},
),
},
}
RETURN_TYPES = ("AUDIO",)
RETURN_NAMES = ("cut_audio",)
CATEGORY = "mtb/audio"
FUNCTION = "cut"
def cut(self, audio: AudioDict, length: float, offset: float):
sample_rate = audio["sample_rate"]
start_idx = int(offset * sample_rate / 1000)
end_idx = min(
start_idx + int(length * sample_rate / 1000),
audio["waveform"].shape[-1],
)
cut_waveform = audio["waveform"][:, :, start_idx:end_idx]
return (
{
"sample_rate": sample_rate,
"waveform": cut_waveform,
},
)
class MTB_AudioStack(MtbAudio):
"""Stack/Overlay audio inputs (dynamic inputs).
- pad audios to the longest inputs.
- resample audios to the highest sample rate in the inputs.
- convert them all to stereo if one of the inputs is.
"""
@classmethod
def INPUT_TYPES(cls):
return {"required": {}}
RETURN_TYPES = ("AUDIO",)
RETURN_NAMES = ("stacked_audio",)
CATEGORY = "mtb/audio"
FUNCTION = "stack"
def stack(self, **kwargs: AudioDict) -> tuple[AudioDict]:
audios, is_stereo, max_rate = self.preprocess_audios(
list(kwargs.values())
)
max_length = max([audio["waveform"].shape[-1] for audio in audios])
padded_audios: list[torch.Tensor] = []
for audio in audios:
padding = torch.zeros(
(
1,
2 if is_stereo else 1,
max_length - audio["waveform"].shape[-1],
)
)
padded_audio = torch.cat([audio["waveform"], padding], dim=-1)
padded_audios.append(padded_audio)
stacked_waveform = torch.stack(padded_audios, dim=0).sum(dim=0)
return (
{
"sample_rate": max_rate,
"waveform": stacked_waveform,
},
)
class MTB_AudioSequence(MtbAudio):
"""Sequence audio inputs (dynamic inputs).
- adding silence_duration between each segment
can now also be negative to overlap the clips, safely bound
to the the input length.
- resample audios to the highest sample rate in the inputs.
- convert them all to stereo if one of the inputs is.
"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"silence_duration": (
("FLOAT"),
{"default": 0.0, "min": -999.0, "max": 999, "step": 0.01},
)
},
}
RETURN_TYPES = ("AUDIO",)
RETURN_NAMES = ("sequenced_audio",)
CATEGORY = "mtb/audio"
FUNCTION = "sequence"
def sequence(self, silence_duration: float, **kwargs: AudioDict):
audios, is_stereo, max_rate = self.preprocess_audios(
list(kwargs.values())
)
sequence: list[torch.Tensor] = []
for i, audio in enumerate(audios):
if i > 0:
if silence_duration > 0:
silence = torch.zeros(
(
1,
2 if is_stereo else 1,
int(silence_duration * max_rate),
)
)
sequence.append(silence)
elif silence_duration < 0:
overlap = int(abs(silence_duration) * max_rate)
previous_audio = sequence[-1]
overlap = min(
overlap,
previous_audio.shape[-1],
audio["waveform"].shape[-1],
)
if overlap > 0:
overlap_part = (
previous_audio[:, :, -overlap:]
+ audio["waveform"][:, :, :overlap]
)
sequence[-1] = previous_audio[:, :, :-overlap]
sequence.append(overlap_part)
audio["waveform"] = audio["waveform"][:, :, overlap:]
sequence.append(audio["waveform"])
sequenced_waveform = torch.cat(sequence, dim=-1)
return (
{
"sample_rate": max_rate,
"waveform": sequenced_waveform,
},
)
__nodes__ = [MTB_AudioSequence, MTB_AudioStack, MTB_AudioCut]
|