Spaces:
Runtime error
Runtime error
File size: 19,415 Bytes
4450790 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 |
import io
import json
import urllib.parse
import urllib.request
from math import pi
import comfy.model_management as model_management
import comfy.utils
import numpy as np
import torch
from PIL import Image
from ..log import log
from ..utils import (
EASINGS,
apply_easing,
get_server_info,
numpy_NFOV,
pil2tensor,
tensor2np,
)
def get_image(filename, subfolder, folder_type):
log.debug(
f"Getting image {filename} from foldertype {folder_type} {f'in subfolder: {subfolder}' if subfolder else ''}"
)
data = {"filename": filename, "subfolder": subfolder, "type": folder_type}
base_url, port = get_server_info()
url_values = urllib.parse.urlencode(data)
url = f"http://{base_url}:{port}/view?{url_values}"
log.debug(f"Fetching image from {url}")
with urllib.request.urlopen(url) as response:
return io.BytesIO(response.read())
class MTB_ToDevice:
"""Send a image or mask tensor to the given device."""
@classmethod
def INPUT_TYPES(cls):
devices = ["cpu"]
if torch.backends.mps.is_available():
devices.append("mps")
if torch.cuda.is_available():
devices.append("cuda")
for i in range(torch.cuda.device_count()):
devices.append(f"cuda{i}")
return {
"required": {
"ignore_errors": ("BOOLEAN", {"default": False}),
"device": (devices, {"default": "cpu"}),
},
"optional": {
"image": ("IMAGE",),
"mask": ("MASK",),
},
}
RETURN_TYPES = ("IMAGE", "MASK")
RETURN_NAMES = ("images", "masks")
CATEGORY = "mtb/utils"
FUNCTION = "to_device"
def to_device(
self,
*,
ignore_errors=False,
device="cuda",
image: torch.Tensor | None = None,
mask: torch.Tensor | None = None,
):
if not ignore_errors and image is None and mask is None:
raise ValueError(
"You must either provide an image or a mask,"
" use ignore_error to passthrough"
)
if image is not None:
image = image.to(device)
if mask is not None:
mask = mask.to(device)
return (image, mask)
# class MTB_ApplyTextTemplate:
class MTB_ApplyTextTemplate:
"""
Experimental node to interpolate strings from inputs.
Interpolation just requires {}, for instance:
Some string {var_1} and {var_2}
"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"template": ("STRING", {"default": "", "multiline": True}),
},
}
RETURN_TYPES = ("STRING",)
RETURN_NAMES = ("string",)
CATEGORY = "mtb/utils"
FUNCTION = "execute"
def execute(self, *, template: str, **kwargs):
res = f"{template}"
for k, v in kwargs.items():
res = res.replace(f"{{{k}}}", f"{v}")
return (res,)
class MTB_MatchDimensions:
"""Match images dimensions along the given dimension, preserving aspect ratio."""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"source": ("IMAGE",),
"reference": ("IMAGE",),
"match": (["height", "width"], {"default": "height"}),
},
}
RETURN_TYPES = ("IMAGE", "INT", "INT")
RETURN_NAMES = ("image", "new_width", "new_height")
CATEGORY = "mtb/utils"
FUNCTION = "execute"
def execute(
self, source: torch.Tensor, reference: torch.Tensor, match: str
):
import torchvision.transforms.functional as VF
_batch_size, height, width, _channels = source.shape
_rbatch_size, rheight, rwidth, _rchannels = reference.shape
source_aspect_ratio = width / height
# reference_aspect_ratio = rwidth / rheight
source = source.permute(0, 3, 1, 2)
reference = reference.permute(0, 3, 1, 2)
if match == "height":
new_height = rheight
new_width = int(rheight * source_aspect_ratio)
else:
new_width = rwidth
new_height = int(rwidth / source_aspect_ratio)
resized_images = [
VF.resize(
source[i],
(new_height, new_width),
antialias=True,
interpolation=Image.BICUBIC,
)
for i in range(_batch_size)
]
resized_source = torch.stack(resized_images, dim=0)
resized_source = resized_source.permute(0, 2, 3, 1)
return (resized_source, new_width, new_height)
class MTB_FloatToFloats:
"""Conversion utility for compatibility with other extensions (AD, IPA, Fitz are using FLOAT to represent list of floats.)"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"float": ("FLOAT", {"default": 0.0, "forceInput": True}),
}
}
RETURN_TYPES = ("FLOATS",)
RETURN_NAMES = ("floats",)
CATEGORY = "mtb/utils"
FUNCTION = "convert"
def convert(self, float: float):
return (float,)
class MTB_FloatsToInts:
"""Conversion utility for compatibility with frame interpolation."""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"floats": ("FLOATS", {"forceInput": True}),
}
}
RETURN_TYPES = ("INTS", "INT")
CATEGORY = "mtb/utils"
FUNCTION = "convert"
def convert(self, floats: list[float]):
vals = [int(x) for x in floats]
return (vals, vals)
class MTB_FloatsToFloat:
"""Conversion utility for compatibility with other extensions (AD, IPA, Fitz are using FLOAT to represent list of floats.)"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"floats": ("FLOATS",),
}
}
RETURN_TYPES = ("FLOAT",)
RETURN_NAMES = ("float",)
CATEGORY = "mtb/utils"
FUNCTION = "convert"
def convert(self, floats):
return (floats,)
class MTB_AutoPanEquilateral:
"""Generate a 360 panning video from an equilateral image."""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"equilateral_image": ("IMAGE",),
"fovX": ("FLOAT", {"default": 45.0}),
"fovY": ("FLOAT", {"default": 45.0}),
"elevation": ("FLOAT", {"default": 0.5}),
"frame_count": ("INT", {"default": 100}),
"width": ("INT", {"default": 768}),
"height": ("INT", {"default": 512}),
},
"optional": {
"floats_fovX": ("FLOATS",),
"floats_fovY": ("FLOATS",),
"floats_elevation": ("FLOATS",),
},
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image",)
CATEGORY = "mtb/utils"
FUNCTION = "generate_frames"
def check_floats(self, f: list[float] | None, expected_count: int):
if f:
if len(f) == expected_count:
return True
return False
return True
def generate_frames(
self,
equilateral_image: torch.Tensor,
fovX: float,
fovY: float,
elevation: float,
frame_count: int,
width: int,
height: int,
floats_fovX: list[float] | None = None,
floats_fovY: list[float] | None = None,
floats_elevation: list[float] | None = None,
):
source = tensor2np(equilateral_image)
if len(source) > 1:
log.warn(
"You provided more than one image in the equilateral_image input, only the first will be used."
)
if not all(
[
self.check_floats(x, frame_count)
for x in [floats_fovX, floats_fovY, floats_elevation]
]
):
raise ValueError(
"You provided less than the expected number of fovX, fovY, or elevation values."
)
source = source[0]
frames = []
pbar = comfy.utils.ProgressBar(frame_count)
for i in range(frame_count):
rotation_angle = (i / frame_count) * 2 * pi
if floats_elevation:
elevation = floats_elevation[i]
if floats_fovX:
fovX = floats_fovX[i]
if floats_fovY:
fovY = floats_fovY[i]
fov = [fovX / 100, fovY / 100]
center_point = [rotation_angle / (2 * pi), elevation]
nfov = numpy_NFOV(fov, height, width)
frame = nfov.to_nfov(source, center_point=center_point)
frames.append(frame)
model_management.throw_exception_if_processing_interrupted()
pbar.update(1)
return (pil2tensor(frames),)
class MTB_GetBatchFromHistory:
"""Very experimental node to load images from the history of the server.
Queue items without output are ignored in the count.
"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"enable": ("BOOLEAN", {"default": True}),
"count": ("INT", {"default": 1, "min": 0}),
"offset": ("INT", {"default": 0, "min": -1e9, "max": 1e9}),
"internal_count": ("INT", {"default": 0}),
},
"optional": {
"passthrough_image": ("IMAGE",),
},
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("images",)
CATEGORY = "mtb/animation"
FUNCTION = "load_from_history"
def load_from_history(
self,
*,
enable=True,
count=0,
offset=0,
internal_count=0, # hacky way to invalidate the node
passthrough_image=None,
):
if not enable or count == 0:
if passthrough_image is not None:
log.debug("Using passthrough image")
return (passthrough_image,)
log.debug("Load from history is disabled for this iteration")
return (torch.zeros(0),)
frames = []
base_url, port = get_server_info()
history_url = f"http://{base_url}:{port}/history"
log.debug(f"Fetching history from {history_url}")
output = torch.zeros(0)
with urllib.request.urlopen(history_url) as response:
output = self.load_batch_frames(response, offset, count, frames)
if output.size(0) == 0:
log.warn("No output found in history")
return (output,)
def load_batch_frames(self, response, offset, count, frames):
history = json.loads(response.read())
output_images = []
for run in history.values():
for node_output in run["outputs"].values():
if "images" in node_output:
for image in node_output["images"]:
image_data = get_image(
image["filename"],
image["subfolder"],
image["type"],
)
output_images.append(image_data)
if not output_images:
return torch.zeros(0)
# Directly get desired range of images
start_index = max(len(output_images) - offset - count, 0)
end_index = len(output_images) - offset
selected_images = output_images[start_index:end_index]
frames = [Image.open(image) for image in selected_images]
if not frames:
return torch.zeros(0)
elif len(frames) != count:
log.warning(f"Expected {count} images, got {len(frames)} instead")
return pil2tensor(frames)
class MTB_AnyToString:
"""Tries to take any input and convert it to a string."""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {"input": ("*",)},
}
RETURN_TYPES = ("STRING",)
FUNCTION = "do_str"
CATEGORY = "mtb/converters"
def do_str(self, input):
if isinstance(input, str):
return (input,)
elif isinstance(input, torch.Tensor):
return (f"Tensor of shape {input.shape} and dtype {input.dtype}",)
elif isinstance(input, Image.Image):
return (f"PIL Image of size {input.size} and mode {input.mode}",)
elif isinstance(input, np.ndarray):
return (
f"Numpy array of shape {input.shape} and dtype {input.dtype}",
)
elif isinstance(input, dict):
return (
f"Dictionary of {len(input)} items, with keys {input.keys()}",
)
else:
log.debug(f"Falling back to string conversion of {input}")
return (str(input),)
class MTB_StringReplace:
"""Basic string replacement."""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"string": ("STRING", {"forceInput": True}),
"old": ("STRING", {"default": ""}),
"new": ("STRING", {"default": ""}),
}
}
FUNCTION = "replace_str"
RETURN_TYPES = ("STRING",)
CATEGORY = "mtb/string"
def replace_str(self, string: str, old: str, new: str):
log.debug(f"Current string: {string}")
log.debug(f"Find string: {old}")
log.debug(f"Replace string: {new}")
string = string.replace(old, new)
log.debug(f"New string: {string}")
return (string,)
class MTB_MathExpression:
"""Node to evaluate a simple math expression string"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"expression": ("STRING", {"default": "", "multiline": True}),
}
}
FUNCTION = "eval_expression"
RETURN_TYPES = ("FLOAT", "INT")
RETURN_NAMES = ("result (float)", "result (int)")
CATEGORY = "mtb/math"
DESCRIPTION = (
"evaluate a simple math expression string, only supports literal_eval"
)
def eval_expression(self, expression: str, **kwargs):
from ast import literal_eval
for key, value in kwargs.items():
log.debug(f"Replacing placeholder <{key}> with value {value}")
expression = expression.replace(f"<{key}>", str(value))
result = -1
try:
result = literal_eval(expression)
except SyntaxError as e:
raise ValueError(
f"The expression syntax is wrong '{expression}': {e}"
) from e
except Exception as e:
raise ValueError(
f"Math expression only support literal_eval now: {e}"
)
return (result, int(result))
class MTB_FitNumber:
"""Fit the input float using a source and target range"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"value": ("FLOAT", {"default": 0, "forceInput": True}),
"clamp": ("BOOLEAN", {"default": False}),
"source_min": (
"FLOAT",
{"default": 0.0, "step": 0.01, "min": -1e5},
),
"source_max": (
"FLOAT",
{"default": 1.0, "step": 0.01, "min": -1e5},
),
"target_min": (
"FLOAT",
{"default": 0.0, "step": 0.01, "min": -1e5},
),
"target_max": (
"FLOAT",
{"default": 1.0, "step": 0.01, "min": -1e5},
),
"easing": (
EASINGS,
{"default": "Linear"},
),
}
}
FUNCTION = "set_range"
RETURN_TYPES = ("FLOAT",)
CATEGORY = "mtb/math"
DESCRIPTION = "Fit the input float using a source and target range"
def set_range(
self,
value: float,
clamp: bool,
source_min: float,
source_max: float,
target_min: float,
target_max: float,
easing: str,
):
if source_min == source_max:
normalized_value = 0
else:
normalized_value = (value - source_min) / (source_max - source_min)
if clamp:
normalized_value = max(min(normalized_value, 1), 0)
eased_value = apply_easing(normalized_value, easing)
# - Convert the eased value to the target range
res = target_min + (target_max - target_min) * eased_value
return (res,)
class MTB_ConcatImages:
"""Add images to batch."""
RETURN_TYPES = ("IMAGE",)
FUNCTION = "concatenate_tensors"
CATEGORY = "mtb/image"
@classmethod
def INPUT_TYPES(cls):
return {
"required": {"reverse": ("BOOLEAN", {"default": False})},
"optional": {
"on_mismatch": (
["Error", "Smallest", "Largest"],
{"default": "Smallest"},
)
},
}
def concatenate_tensors(
self,
reverse: bool,
on_mismatch: str = "Smallest",
**kwargs: torch.Tensor,
) -> tuple[torch.Tensor]:
tensors = list(kwargs.values())
if on_mismatch == "Error":
shapes = [tensor.shape for tensor in tensors]
if not all(shape == shapes[0] for shape in shapes):
raise ValueError(
"All input tensors must have the same shape when on_mismatch is 'Error'."
)
else:
import torch.nn.functional as F
if on_mismatch == "Smallest":
target_shape = min(
(tensor.shape for tensor in tensors),
key=lambda s: (s[1], s[2]),
)
else: # on_mismatch == "Largest"
target_shape = max(
(tensor.shape for tensor in tensors),
key=lambda s: (s[1], s[2]),
)
target_height, target_width = target_shape[1], target_shape[2]
resized_tensors = []
for tensor in tensors:
if (
tensor.shape[1] != target_height
or tensor.shape[2] != target_width
):
resized_tensor = F.interpolate(
tensor.permute(0, 3, 1, 2),
size=(target_height, target_width),
mode="bilinear",
align_corners=False,
)
resized_tensor = resized_tensor.permute(0, 2, 3, 1)
resized_tensors.append(resized_tensor)
else:
resized_tensors.append(tensor)
tensors = resized_tensors
concatenated = torch.cat(tensors, dim=0)
return (concatenated,)
__nodes__ = [
MTB_StringReplace,
MTB_FitNumber,
MTB_GetBatchFromHistory,
MTB_AnyToString,
MTB_ConcatImages,
MTB_MathExpression,
MTB_ToDevice,
MTB_ApplyTextTemplate,
MTB_MatchDimensions,
MTB_AutoPanEquilateral,
MTB_FloatsToFloat,
MTB_FloatToFloats,
MTB_FloatsToInts,
]
|