Spaces:
Runtime error
Runtime error
File size: 39,638 Bytes
4450790 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 |
import itertools
import json
import math
import os
import comfy.model_management as model_management
import folder_paths
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image, ImageOps
from PIL.PngImagePlugin import PngInfo
from skimage.filters import gaussian
from skimage.util import compare_images
from ..log import log
from ..utils import np2tensor, pil2tensor, tensor2pil
# try:
# from cv2.ximgproc import guidedFilter
# except ImportError:
# log.warning("cv2.ximgproc.guidedFilter not found, use opencv-contrib-python")
def gaussian_kernel(
kernel_size: int, sigma_x: float, sigma_y: float, device=None
):
x, y = torch.meshgrid(
torch.linspace(-1, 1, kernel_size, device=device),
torch.linspace(-1, 1, kernel_size, device=device),
indexing="ij",
)
d_x = x * x / (2.0 * sigma_x * sigma_x)
d_y = y * y / (2.0 * sigma_y * sigma_y)
g = torch.exp(-(d_x + d_y))
return g / g.sum()
class MTB_CoordinatesToString:
RETURN_TYPES = ("STRING",)
FUNCTION = "convert"
CATEGORY = "mtb/coordinates"
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"coordinates": ("BATCH_COORDINATES",),
"frame": ("INT",),
}
}
def convert(
self, coordinates: list[list[tuple[int, int]]], frame: int
) -> tuple[str]:
frame = max(frame, len(coordinates) - 1)
coords = coordinates[frame]
output: list[dict[str, int]] = []
for x, y in coords:
output.append({"x": x, "y": y})
return (json.dumps(output),)
class MTB_ExtractCoordinatesFromImage:
"""Extract 2D points from a batch of images based on a threshold."""
RETURN_TYPES = ("BATCH_COORDINATES", "IMAGE")
FUNCTION = "extract"
CATEGORY = "mtb/coordinates"
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"threshold": ("FLOAT",),
"max_points": ("INT", {"default": 50, "min": 0}),
},
"optional": {"image": ("IMAGE",), "mask": ("MASK",)},
}
def extract(
self,
threshold: float,
max_points: int,
image: torch.Tensor | None = None,
mask: torch.Tensor | None = None,
) -> tuple[list[list[tuple[int, int]]], torch.Tensor]:
if image is not None:
batch_count, height, width, channel_count = image.shape
imgs = image
else:
if mask is None:
raise ValueError("Must provide either image or mask")
batch_count, height, width = mask.shape
channel_count = 1
imgs = mask
if channel_count not in [1, 2, 3, 4]:
raise ValueError(f"Incorrect channel count: {channel_count}")
all_points: list[list[tuple[int, int]]] = []
debug_images = torch.zeros(
(batch_count, height, width, 3),
dtype=torch.uint8,
device=imgs.device,
)
for i, img in enumerate(imgs):
if channel_count == 1:
alpha_channel = img if len(img.shape) == 2 else img[:, :, 0]
elif channel_count == 2:
alpha_channel = img[:, :, 1]
elif channel_count == 4:
alpha_channel = img[:, :, 3]
else:
# get intensity
alpha_channel = img[:, :, :3].max(dim=2)[0]
points = (alpha_channel > threshold).nonzero(as_tuple=False)
if len(points) > max_points:
indices = torch.randperm(points.size(0), device=img.device)[
:max_points
]
points = points[indices]
points = [(int(y.item()), int(x.item())) for x, y in points]
all_points.append(points)
for x, y in points:
self._draw_circle(debug_images[i], (x, y), 5)
return (all_points, debug_images)
@staticmethod
def _draw_circle(
image: torch.Tensor, center: tuple[int, int], radius: int
):
"""Draw a 5px circle on the image."""
x0, y0 = center
for x in range(-radius, radius + 1):
for y in range(-radius, radius + 1):
in_radius = x**2 + y**2 <= radius**2
in_bounds = (
0 <= x0 + x < image.shape[1]
and 0 <= y0 + y < image.shape[0]
)
if in_radius and in_bounds:
image[y0 + y, x0 + x] = torch.tensor(
[255, 255, 255],
dtype=torch.uint8,
device=image.device,
)
class MTB_ColorCorrectGPU:
"""Various color correction methods using only Torch."""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"force_gpu": ("BOOLEAN", {"default": True}),
"clamp": ([True, False], {"default": True}),
"gamma": (
"FLOAT",
{"default": 1.0, "min": 0.0, "max": 5.0, "step": 0.01},
),
"contrast": (
"FLOAT",
{"default": 1.0, "min": 0.0, "max": 5.0, "step": 0.01},
),
"exposure": (
"FLOAT",
{"default": 0.0, "min": -5.0, "max": 5.0, "step": 0.01},
),
"offset": (
"FLOAT",
{"default": 0.0, "min": -5.0, "max": 5.0, "step": 0.01},
),
"hue": (
"FLOAT",
{"default": 0.0, "min": -0.5, "max": 0.5, "step": 0.01},
),
"saturation": (
"FLOAT",
{"default": 1.0, "min": 0.0, "max": 5.0, "step": 0.01},
),
"value": (
"FLOAT",
{"default": 1.0, "min": 0.0, "max": 5.0, "step": 0.01},
),
},
"optional": {"mask": ("MASK",)},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "correct"
CATEGORY = "mtb/image processing"
@staticmethod
def get_device(tensor: torch.Tensor, force_gpu: bool):
if force_gpu:
if torch.cuda.is_available():
return torch.device("cuda")
elif (
hasattr(torch.backends, "mps")
and torch.backends.mps.is_available()
):
return torch.device("mps")
elif hasattr(torch, "hip") and torch.hip.is_available():
return torch.device("hip")
return (
tensor.device
) # model_management.get_torch_device() # torch.device("cpu")
@staticmethod
def rgb_to_hsv(image: torch.Tensor):
r, g, b = image.unbind(-1)
max_rgb, argmax_rgb = image.max(-1)
min_rgb, _ = image.min(-1)
diff = max_rgb - min_rgb
h = torch.empty_like(max_rgb)
s = diff / (max_rgb + 1e-7)
v = max_rgb
h[argmax_rgb == 0] = (g - b)[argmax_rgb == 0] / (diff + 1e-7)[
argmax_rgb == 0
]
h[argmax_rgb == 1] = (
2.0 + (b - r)[argmax_rgb == 1] / (diff + 1e-7)[argmax_rgb == 1]
)
h[argmax_rgb == 2] = (
4.0 + (r - g)[argmax_rgb == 2] / (diff + 1e-7)[argmax_rgb == 2]
)
h = (h / 6.0) % 1.0
h = h.unsqueeze(-1)
s = s.unsqueeze(-1)
v = v.unsqueeze(-1)
return torch.cat((h, s, v), dim=-1)
@staticmethod
def hsv_to_rgb(hsv: torch.Tensor):
h, s, v = hsv.unbind(-1)
h = h * 6.0
i = torch.floor(h)
f = h - i
p = v * (1.0 - s)
q = v * (1.0 - s * f)
t = v * (1.0 - s * (1.0 - f))
i = i.long() % 6
mask = torch.stack(
(i == 0, i == 1, i == 2, i == 3, i == 4, i == 5), -1
)
rgb = torch.stack(
(
torch.where(
mask[..., 0],
v,
torch.where(
mask[..., 1],
q,
torch.where(
mask[..., 2],
p,
torch.where(
mask[..., 3],
p,
torch.where(mask[..., 4], t, v),
),
),
),
),
torch.where(
mask[..., 0],
t,
torch.where(
mask[..., 1],
v,
torch.where(
mask[..., 2],
v,
torch.where(
mask[..., 3],
q,
torch.where(mask[..., 4], p, p),
),
),
),
),
torch.where(
mask[..., 0],
p,
torch.where(
mask[..., 1],
p,
torch.where(
mask[..., 2],
t,
torch.where(
mask[..., 3],
v,
torch.where(mask[..., 4], v, q),
),
),
),
),
),
dim=-1,
)
return rgb
def correct(
self,
image: torch.Tensor,
force_gpu: bool,
clamp: bool,
gamma: float = 1.0,
contrast: float = 1.0,
exposure: float = 0.0,
offset: float = 0.0,
hue: float = 0.0,
saturation: float = 1.0,
value: float = 1.0,
mask: torch.Tensor | None = None,
):
device = self.get_device(image, force_gpu)
image = image.to(device)
if mask is not None:
if mask.shape[0] != image.shape[0]:
mask = mask.expand(image.shape[0], -1, -1)
mask = mask.unsqueeze(-1).expand(-1, -1, -1, 3)
mask = mask.to(device)
model_management.throw_exception_if_processing_interrupted()
adjusted = image.pow(1 / gamma) * (2.0**exposure) * contrast + offset
model_management.throw_exception_if_processing_interrupted()
hsv = self.rgb_to_hsv(adjusted)
hsv[..., 0] = (hsv[..., 0] + hue) % 1.0 # Hue
hsv[..., 1] = hsv[..., 1] * saturation # Saturation
hsv[..., 2] = hsv[..., 2] * value # Value
adjusted = self.hsv_to_rgb(hsv)
model_management.throw_exception_if_processing_interrupted()
if clamp:
adjusted = torch.clamp(adjusted, 0.0, 1.0)
# apply mask
result = (
adjusted
if mask is None
else torch.where(mask > 0, adjusted, image)
)
if not force_gpu:
result = result.cpu()
return (result,)
class MTB_ColorCorrect:
"""Various color correction methods"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"clamp": ([True, False], {"default": True}),
"gamma": (
"FLOAT",
{"default": 1.0, "min": 0.0, "max": 5.0, "step": 0.01},
),
"contrast": (
"FLOAT",
{"default": 1.0, "min": 0.0, "max": 5.0, "step": 0.01},
),
"exposure": (
"FLOAT",
{"default": 0.0, "min": -5.0, "max": 5.0, "step": 0.01},
),
"offset": (
"FLOAT",
{"default": 0.0, "min": -5.0, "max": 5.0, "step": 0.01},
),
"hue": (
"FLOAT",
{"default": 0.0, "min": -0.5, "max": 0.5, "step": 0.01},
),
"saturation": (
"FLOAT",
{"default": 1.0, "min": 0.0, "max": 5.0, "step": 0.01},
),
"value": (
"FLOAT",
{"default": 1.0, "min": 0.0, "max": 5.0, "step": 0.01},
),
},
"optional": {"mask": ("MASK",)},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "correct"
CATEGORY = "mtb/image processing"
@staticmethod
def gamma_correction_tensor(image, gamma):
gamma_inv = 1.0 / gamma
return image.pow(gamma_inv)
@staticmethod
def contrast_adjustment_tensor(image, contrast):
r, g, b = image.unbind(-1)
# Using Adobe RGB luminance weights.
luminance_image = 0.33 * r + 0.71 * g + 0.06 * b
luminance_mean = torch.mean(luminance_image.unsqueeze(-1))
# Blend original with mean luminance using contrast factor as blend ratio.
contrasted = image * contrast + (1.0 - contrast) * luminance_mean
return torch.clamp(contrasted, 0.0, 1.0)
@staticmethod
def exposure_adjustment_tensor(image, exposure):
return image * (2.0**exposure)
@staticmethod
def offset_adjustment_tensor(image, offset):
return image + offset
@staticmethod
def hsv_adjustment(image: torch.Tensor, hue, saturation, value):
images = tensor2pil(image)
out = []
for img in images:
hsv_image = img.convert("HSV")
h, s, v = hsv_image.split()
h = h.point(lambda x: (x + hue * 255) % 256)
s = s.point(lambda x: int(x * saturation))
v = v.point(lambda x: int(x * value))
hsv_image = Image.merge("HSV", (h, s, v))
rgb_image = hsv_image.convert("RGB")
out.append(rgb_image)
return pil2tensor(out)
@staticmethod
def hsv_adjustment_tensor_not_working(
image: torch.Tensor, hue, saturation, value
):
"""Abandonning for now"""
image = image.squeeze(0).permute(2, 0, 1)
max_val, _ = image.max(dim=0, keepdim=True)
min_val, _ = image.min(dim=0, keepdim=True)
delta = max_val - min_val
hue_image = torch.zeros_like(max_val)
mask = delta != 0.0
r, g, b = image[0], image[1], image[2]
hue_image[mask & (max_val == r)] = ((g - b) / delta)[
mask & (max_val == r)
] % 6.0
hue_image[mask & (max_val == g)] = ((b - r) / delta)[
mask & (max_val == g)
] + 2.0
hue_image[mask & (max_val == b)] = ((r - g) / delta)[
mask & (max_val == b)
] + 4.0
saturation_image = delta / (max_val + 1e-7)
value_image = max_val
hue_image = (hue_image + hue) % 1.0
saturation_image = torch.where(
mask, saturation * saturation_image, saturation_image
)
value_image = value * value_image
c = value_image * saturation_image
x = c * (1 - torch.abs((hue_image % 2) - 1))
m = value_image - c
prime_image = torch.zeros_like(image)
prime_image[0] = torch.where(
max_val == r, c, torch.where(max_val == g, x, prime_image[0])
)
prime_image[1] = torch.where(
max_val == r, x, torch.where(max_val == g, c, prime_image[1])
)
prime_image[2] = torch.where(
max_val == g, x, torch.where(max_val == b, c, prime_image[2])
)
rgb_image = prime_image + m
rgb_image = rgb_image.permute(1, 2, 0).unsqueeze(0)
return rgb_image
def correct(
self,
image: torch.Tensor,
clamp: bool,
gamma: float = 1.0,
contrast: float = 1.0,
exposure: float = 0.0,
offset: float = 0.0,
hue: float = 0.0,
saturation: float = 1.0,
value: float = 1.0,
mask: torch.Tensor | None = None,
):
if mask is not None:
if mask.shape[0] != image.shape[0]:
mask = mask.expand(image.shape[0], -1, -1)
mask = mask.unsqueeze(-1).expand(-1, -1, -1, 3)
# Apply color correction operations
adjusted = self.gamma_correction_tensor(image, gamma)
adjusted = self.contrast_adjustment_tensor(adjusted, contrast)
adjusted = self.exposure_adjustment_tensor(adjusted, exposure)
adjusted = self.offset_adjustment_tensor(adjusted, offset)
adjusted = self.hsv_adjustment(adjusted, hue, saturation, value)
if clamp:
adjusted = torch.clamp(image, 0.0, 1.0)
result = (
adjusted
if mask is None
else torch.where(mask > 0, adjusted, image)
)
return (result,)
class MTB_ImageCompare:
"""Compare two images and return a difference image"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"imageA": ("IMAGE",),
"imageB": ("IMAGE",),
"mode": (
["checkerboard", "diff", "blend"],
{"default": "checkerboard"},
),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "compare"
CATEGORY = "mtb/image"
def compare(self, imageA: torch.Tensor, imageB: torch.Tensor, mode):
if imageA.dim() == 4:
batch_count = imageA.size(0)
return (
torch.cat(
tuple(
self.compare(imageA[i], imageB[i], mode)[0]
for i in range(batch_count)
),
dim=0,
),
)
num_channels_A = imageA.size(2)
num_channels_B = imageB.size(2)
# handle RGBA/RGB mismatch
if num_channels_A == 3 and num_channels_B == 4:
imageA = torch.cat(
(imageA, torch.ones_like(imageA[:, :, 0:1])), dim=2
)
elif num_channels_B == 3 and num_channels_A == 4:
imageB = torch.cat(
(imageB, torch.ones_like(imageB[:, :, 0:1])), dim=2
)
match mode:
case "diff":
compare_image = torch.abs(imageA - imageB)
case "blend":
compare_image = 0.5 * (imageA + imageB)
case "checkerboard":
imageA = imageA.numpy()
imageB = imageB.numpy()
compared_channels = [
torch.from_numpy(
compare_images(
imageA[:, :, i], imageB[:, :, i], method=mode
)
)
for i in range(imageA.shape[2])
]
compare_image = torch.stack(compared_channels, dim=2)
case _:
compare_image = None
raise ValueError(f"Unknown mode {mode}")
compare_image = compare_image.unsqueeze(0)
return (compare_image,)
import requests
class MTB_LoadImageFromUrl:
"""Load an image from the given URL"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"url": (
"STRING",
{
"default": "https://upload.wikimedia.org/wikipedia/commons/thumb/a/a7/Example.jpg/800px-Example.jpg"
},
),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "load"
CATEGORY = "mtb/IO"
def load(self, url):
# get the image from the url
image = Image.open(requests.get(url, stream=True).raw)
image = ImageOps.exif_transpose(image)
return (pil2tensor(image),)
class MTB_Blur:
"""Blur an image using a Gaussian filter."""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"sigmaX": (
"FLOAT",
{"default": 3.0, "min": 0.0, "max": 200.0, "step": 0.01},
),
"sigmaY": (
"FLOAT",
{"default": 3.0, "min": 0.0, "max": 200.0, "step": 0.01},
),
},
"optional": {"sigmasX": ("FLOATS",), "sigmasY": ("FLOATS",)},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "blur"
CATEGORY = "mtb/image processing"
def blur(
self, image: torch.Tensor, sigmaX, sigmaY, sigmasX=None, sigmasY=None
):
image_np = image.numpy() * 255
blurred_images = []
if sigmasX is not None:
if sigmasY is None:
sigmasY = sigmasX
if len(sigmasX) != image.size(0):
raise ValueError(
f"SigmasX must have same length as image, sigmasX is {len(sigmasX)} but the batch size is {image.size(0)}"
)
for i in range(image.size(0)):
blurred = gaussian(
image_np[i],
sigma=(sigmasX[i], sigmasY[i], 0),
channel_axis=2,
)
blurred_images.append(blurred)
image_np = np.array(blurred_images)
else:
for i in range(image.size(0)):
blurred = gaussian(
image_np[i], sigma=(sigmaX, sigmaY, 0), channel_axis=2
)
blurred_images.append(blurred)
image_np = np.array(blurred_images)
return (np2tensor(image_np).squeeze(0),)
class MTB_Sharpen:
"""Sharpens an image using a Gaussian kernel."""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"sharpen_radius": (
"INT",
{"default": 1, "min": 1, "max": 31, "step": 1},
),
"sigma_x": (
"FLOAT",
{"default": 1.0, "min": 0.1, "max": 10.0, "step": 0.1},
),
"sigma_y": (
"FLOAT",
{"default": 1.0, "min": 0.1, "max": 10.0, "step": 0.1},
),
"alpha": (
"FLOAT",
{"default": 1.0, "min": 0.0, "max": 5.0, "step": 0.1},
),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "do_sharp"
CATEGORY = "mtb/image processing"
def do_sharp(
self,
image: torch.Tensor,
sharpen_radius: int,
sigma_x: float,
sigma_y: float,
alpha: float,
):
if sharpen_radius == 0:
return (image,)
channels = image.shape[3]
kernel_size = 2 * sharpen_radius + 1
kernel = gaussian_kernel(kernel_size, sigma_x, sigma_y) * -(alpha * 10)
# Modify center of kernel to make it a sharpening kernel
center = kernel_size // 2
kernel[center, center] = kernel[center, center] - kernel.sum() + 1.0
kernel = kernel.repeat(channels, 1, 1).unsqueeze(1)
tensor_image = image.permute(0, 3, 1, 2)
tensor_image = F.pad(
tensor_image,
(sharpen_radius, sharpen_radius, sharpen_radius, sharpen_radius),
"reflect",
)
sharpened = F.conv2d(
tensor_image, kernel, padding=center, groups=channels
)
# Remove padding
sharpened = sharpened[
:,
:,
sharpen_radius:-sharpen_radius,
sharpen_radius:-sharpen_radius,
]
sharpened = sharpened.permute(0, 2, 3, 1)
result = torch.clamp(sharpened, 0, 1)
return (result,)
# https://github.com/lllyasviel/AdverseCleaner/blob/main/clean.py
# def deglaze_np_img(np_img):
# y = np_img.copy()
# for _ in range(64):
# y = cv2.bilateralFilter(y, 5, 8, 8)
# for _ in range(4):
# y = guidedFilter(np_img, y, 4, 16)
# return y
# class DeglazeImage:
# """Remove adversarial noise from images"""
# @classmethod
# def INPUT_TYPES(cls):
# return {"required": {"image": ("IMAGE",)}}
# CATEGORY = "mtb/image processing"
# RETURN_TYPES = ("IMAGE",)
# FUNCTION = "deglaze_image"
# def deglaze_image(self, image):
# return (np2tensor(deglaze_np_img(tensor2np(image))),)
class MTB_MaskToImage:
"""Converts a mask (alpha) to an RGB image with a color and background"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"mask": ("MASK",),
"color": ("COLOR",),
"background": ("COLOR", {"default": "#000000"}),
},
"optional": {
"invert": ("BOOLEAN", {"default": False}),
},
}
CATEGORY = "mtb/generate"
RETURN_TYPES = ("IMAGE",)
FUNCTION = "render_mask"
def render_mask(self, mask, color, background, invert=False):
masks = tensor2pil(1.0 - mask) if invert else tensor2pil(mask)
images = []
for m in masks:
_mask = m.convert("L")
log.debug(
f"Converted mask to PIL Image format, size: {_mask.size}"
)
image = Image.new("RGBA", _mask.size, color=color)
# apply the mask
image = Image.composite(
image, Image.new("RGBA", _mask.size, color=background), _mask
)
# image = ImageChops.multiply(image, mask)
# apply over background
# image = Image.alpha_composite(Image.new("RGBA", image.size, color=background), image)
images.append(image.convert("RGB"))
return (pil2tensor(images),)
class MTB_ColoredImage:
"""Constant color image of given size."""
def __init__(self) -> None:
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"color": ("COLOR",),
"width": ("INT", {"default": 512, "min": 16, "max": 8160}),
"height": ("INT", {"default": 512, "min": 16, "max": 8160}),
},
"optional": {
"foreground_image": ("IMAGE",),
"foreground_mask": ("MASK",),
"invert": ("BOOLEAN", {"default": False}),
"mask_opacity": (
"FLOAT",
{"default": 1.0, "step": 0.1, "min": 0},
),
},
}
CATEGORY = "mtb/generate"
RETURN_TYPES = ("IMAGE",)
FUNCTION = "render_img"
def resize_and_crop(self, img: Image.Image, target_size: tuple[int, int]):
scale = max(target_size[0] / img.width, target_size[1] / img.height)
new_size = (int(img.width * scale), int(img.height * scale))
img = img.resize(new_size, Image.LANCZOS)
left = (img.width - target_size[0]) // 2
top = (img.height - target_size[1]) // 2
return img.crop(
(left, top, left + target_size[0], top + target_size[1])
)
def resize_and_crop_thumbnails(
self, img: Image.Image, target_size: tuple[int, int]
):
img.thumbnail(target_size, Image.LANCZOS)
left = (img.width - target_size[0]) / 2
top = (img.height - target_size[1]) / 2
right = (img.width + target_size[0]) / 2
bottom = (img.height + target_size[1]) / 2
return img.crop((left, top, right, bottom))
@staticmethod
def process_mask(
mask: torch.Tensor | None,
invert: bool,
# opacity: float,
batch_size: int,
) -> list[Image.Image] | None:
if mask is None:
return [None] * batch_size
masks = tensor2pil(mask if not invert else 1.0 - mask)
if len(masks) == 1 and batch_size > 1:
masks = masks * batch_size
if len(masks) != batch_size:
raise ValueError(
"Foreground image and mask must have the same batch size"
)
return masks
def render_img(
self,
color: str,
width: int,
height: int,
foreground_image: torch.Tensor | None = None,
foreground_mask: torch.Tensor | None = None,
invert: bool = False,
mask_opacity: float = 1.0,
) -> tuple[torch.Tensor]:
background = Image.new("RGBA", (width, height), color=color)
if foreground_image is None:
return (pil2tensor([background.convert("RGB")]),)
fg_images = tensor2pil(foreground_image)
fg_masks = self.process_mask(foreground_mask, invert, len(fg_images))
output: list[Image.Image] = []
for fg_image, fg_mask in zip(fg_images, fg_masks, strict=False):
fg_image = self.resize_and_crop(fg_image, background.size)
if fg_mask:
fg_mask = self.resize_and_crop(fg_mask, background.size)
fg_mask_array = np.array(fg_mask)
fg_mask_array = (fg_mask_array * mask_opacity).astype(np.uint8)
fg_mask = Image.fromarray(fg_mask_array)
output.append(
Image.composite(
fg_image.convert("RGBA"), background, fg_mask
).convert("RGB")
)
else:
if fg_image.mode != "RGBA":
raise ValueError(
f"Foreground image must be in 'RGBA' mode when no mask is provided, got {fg_image.mode}"
)
output.append(
Image.alpha_composite(background, fg_image).convert("RGB")
)
return (pil2tensor(output),)
class MTB_ImagePremultiply:
"""Premultiply image with mask"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"mask": ("MASK",),
"invert": ("BOOLEAN", {"default": False}),
}
}
CATEGORY = "mtb/image"
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("RGBA",)
FUNCTION = "premultiply"
def premultiply(self, image, mask, invert):
images = tensor2pil(image)
masks = tensor2pil(mask) if invert else tensor2pil(1.0 - mask)
single = len(mask) == 1
masks = [x.convert("L") for x in masks]
out = []
for i, img in enumerate(images):
cur_mask = masks[0] if single else masks[i]
img.putalpha(cur_mask)
out.append(img)
# if invert:
# image = Image.composite(image,Image.new("RGBA", image.size, color=(0,0,0,0)), mask)
# else:
# image = Image.composite(Image.new("RGBA", image.size, color=(0,0,0,0)), image, mask)
return (pil2tensor(out),)
class MTB_ImageResizeFactor:
"""Extracted mostly from WAS Node Suite, with a few edits (most notably multiple image support) and less features."""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"factor": (
"FLOAT",
{"default": 2, "min": 0.01, "max": 16.0, "step": 0.01},
),
"supersample": ("BOOLEAN", {"default": True}),
"resampling": (
[
"nearest",
"linear",
"bilinear",
"bicubic",
"trilinear",
"area",
"nearest-exact",
],
{"default": "nearest"},
),
},
"optional": {
"mask": ("MASK",),
},
}
CATEGORY = "mtb/image"
RETURN_TYPES = ("IMAGE", "MASK")
FUNCTION = "resize"
def resize(
self,
image: torch.Tensor,
factor: float,
supersample: bool,
resampling: str,
mask=None,
):
# Check if the tensor has the correct dimension
if len(image.shape) not in [3, 4]: # HxWxC or BxHxWxC
raise ValueError(
"Expected image tensor of shape (H, W, C) or (B, H, W, C)"
)
# Transpose to CxHxW or BxCxHxW for PyTorch
if len(image.shape) == 3:
image = image.permute(2, 0, 1).unsqueeze(0) # CxHxW
else:
image = image.permute(0, 3, 1, 2) # BxCxHxW
# Compute new dimensions
B, C, H, W = image.shape
new_H, new_W = int(H * factor), int(W * factor)
align_corner_filters = ("linear", "bilinear", "bicubic", "trilinear")
# Resize the image
resized_image = F.interpolate(
image,
size=(new_H, new_W),
mode=resampling,
align_corners=resampling in align_corner_filters,
)
# Optionally supersample
if supersample:
resized_image = F.interpolate(
resized_image,
scale_factor=2,
mode=resampling,
align_corners=resampling in align_corner_filters,
)
# Transpose back to the original format: BxHxWxC or HxWxC
if len(image.shape) == 4:
resized_image = resized_image.permute(0, 2, 3, 1)
else:
resized_image = resized_image.squeeze(0).permute(1, 2, 0)
# Apply mask if provided
if mask is not None:
if len(mask.shape) != len(resized_image.shape):
raise ValueError(
"Mask tensor should have the same dimensions as the image tensor"
)
resized_image = resized_image * mask
return (resized_image,)
class MTB_SaveImageGrid:
"""Save all the images in the input batch as a grid of images."""
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
self.type = "output"
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"images": ("IMAGE",),
"filename_prefix": ("STRING", {"default": "ComfyUI"}),
"save_intermediate": ("BOOLEAN", {"default": False}),
},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
RETURN_TYPES = ()
FUNCTION = "save_images"
OUTPUT_NODE = True
CATEGORY = "mtb/IO"
def create_image_grid(self, image_list):
total_images = len(image_list)
# Calculate the grid size based on the square root of the total number of images
grid_size = (
int(math.sqrt(total_images)),
int(math.ceil(math.sqrt(total_images))),
)
# Get the size of the first image to determine the grid size
image_width, image_height = image_list[0].size
# Create a new blank image to hold the grid
grid_width = grid_size[0] * image_width
grid_height = grid_size[1] * image_height
grid_image = Image.new("RGB", (grid_width, grid_height))
# Iterate over the images and paste them onto the grid
for i, image in enumerate(image_list):
x = (i % grid_size[0]) * image_width
y = (i // grid_size[0]) * image_height
grid_image.paste(image, (x, y, x + image_width, y + image_height))
return grid_image
def save_images(
self,
images,
filename_prefix="Grid",
save_intermediate=False,
prompt=None,
extra_pnginfo=None,
):
(
full_output_folder,
filename,
counter,
subfolder,
filename_prefix,
) = folder_paths.get_save_image_path(
filename_prefix,
self.output_dir,
images[0].shape[1],
images[0].shape[0],
)
image_list = []
batch_counter = counter
metadata = PngInfo()
if prompt is not None:
metadata.add_text("prompt", json.dumps(prompt))
if extra_pnginfo is not None:
for x in extra_pnginfo:
metadata.add_text(x, json.dumps(extra_pnginfo[x]))
for idx, image in enumerate(images):
i = 255.0 * image.cpu().numpy()
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
image_list.append(img)
if save_intermediate:
file = f"{filename}_batch-{idx:03}_{batch_counter:05}_.png"
img.save(
os.path.join(full_output_folder, file),
pnginfo=metadata,
compress_level=4,
)
batch_counter += 1
file = f"{filename}_{counter:05}_.png"
grid = self.create_image_grid(image_list)
grid.save(
os.path.join(full_output_folder, file),
pnginfo=metadata,
compress_level=4,
)
results = [
{"filename": file, "subfolder": subfolder, "type": self.type}
]
return {"ui": {"images": results}}
class MTB_ImageTileOffset:
"""Mimics an old photoshop technique to check for seamless textures"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"tilesX": ("INT", {"default": 2, "min": 1}),
"tilesY": ("INT", {"default": 2, "min": 1}),
}
}
CATEGORY = "mtb/generate"
RETURN_TYPES = ("IMAGE",)
FUNCTION = "tile_image"
def tile_image(
self, image: torch.Tensor, tilesX: int = 2, tilesY: int = 2
):
if tilesX < 1 or tilesY < 1:
raise ValueError("The number of tiles must be at least 1.")
batch_size, height, width, channels = image.shape
tile_height = height // tilesY
tile_width = width // tilesX
output_image = torch.zeros_like(image)
for i, j in itertools.product(range(tilesY), range(tilesX)):
start_h = i * tile_height
end_h = start_h + tile_height
start_w = j * tile_width
end_w = start_w + tile_width
tile = image[:, start_h:end_h, start_w:end_w, :]
output_start_h = (i + 1) % tilesY * tile_height
output_start_w = (j + 1) % tilesX * tile_width
output_end_h = output_start_h + tile_height
output_end_w = output_start_w + tile_width
output_image[
:, output_start_h:output_end_h, output_start_w:output_end_w, :
] = tile
return (output_image,)
__nodes__ = [
MTB_ColorCorrect,
MTB_ColorCorrectGPU,
MTB_ImageCompare,
MTB_ImageTileOffset,
MTB_Blur,
# DeglazeImage,
MTB_MaskToImage,
MTB_ColoredImage,
MTB_ImagePremultiply,
MTB_ImageResizeFactor,
MTB_SaveImageGrid,
MTB_LoadImageFromUrl,
MTB_Sharpen,
MTB_ExtractCoordinatesFromImage,
MTB_CoordinatesToString,
]
|