File size: 10,708 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# to be used with https://github.com/a1lazydog/ComfyUI-AudioScheduler 
import torch
from torchvision.transforms import functional as TF
from PIL import Image, ImageDraw
import numpy as np
from ..utility.utility import pil2tensor
from nodes import MAX_RESOLUTION

class NormalizedAmplitudeToMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                    "normalized_amp": ("NORMALIZED_AMPLITUDE",),
                    "width": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
                    "height": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
                    "frame_offset": ("INT", {"default": 0,"min": -255, "max": 255, "step": 1}),
                    "location_x": ("INT", {"default": 256,"min": 0, "max": 4096, "step": 1}),
                    "location_y": ("INT", {"default": 256,"min": 0, "max": 4096, "step": 1}),
                    "size": ("INT", {"default": 128,"min": 8, "max": 4096, "step": 1}),
                    "shape": (
                        [   
                            'none',
                            'circle',
                            'square',
                            'triangle',
                        ],
                        {
                        "default": 'none'
                        }),
                    "color": (
                        [   
                            'white',
                            'amplitude',
                        ],
                        {
                        "default": 'amplitude'
                        }),
                     },}

    CATEGORY = "KJNodes/audio"
    RETURN_TYPES = ("MASK",)
    FUNCTION = "convert"
    DESCRIPTION = """
Works as a bridge to the AudioScheduler -nodes:  
https://github.com/a1lazydog/ComfyUI-AudioScheduler  
Creates masks based on the normalized amplitude.
"""

    def convert(self, normalized_amp, width, height, frame_offset, shape, location_x, location_y, size, color):
        # Ensure normalized_amp is an array and within the range [0, 1]
        normalized_amp = np.clip(normalized_amp, 0.0, 1.0)

        # Offset the amplitude values by rolling the array
        normalized_amp = np.roll(normalized_amp, frame_offset)
        
        # Initialize an empty list to hold the image tensors
        out = []
        # Iterate over each amplitude value to create an image
        for amp in normalized_amp:
            # Scale the amplitude value to cover the full range of grayscale values
            if color == 'amplitude':
                grayscale_value = int(amp * 255)
            elif color == 'white':
                grayscale_value = 255
            # Convert the grayscale value to an RGB format
            gray_color = (grayscale_value, grayscale_value, grayscale_value)
            finalsize = size * amp
            
            if shape == 'none':
                shapeimage = Image.new("RGB", (width, height), gray_color)
            else:
                shapeimage = Image.new("RGB", (width, height), "black")

            draw = ImageDraw.Draw(shapeimage)
            if shape == 'circle' or shape == 'square':
                # Define the bounding box for the shape
                left_up_point = (location_x - finalsize, location_y - finalsize)
                right_down_point = (location_x + finalsize,location_y + finalsize)
                two_points = [left_up_point, right_down_point]

                if shape == 'circle':
                    draw.ellipse(two_points, fill=gray_color)
                elif shape == 'square':
                    draw.rectangle(two_points, fill=gray_color)
                    
            elif shape == 'triangle':
                # Define the points for the triangle
                left_up_point = (location_x - finalsize, location_y + finalsize) # bottom left
                right_down_point = (location_x + finalsize, location_y + finalsize) # bottom right
                top_point = (location_x, location_y) # top point
                draw.polygon([top_point, left_up_point, right_down_point], fill=gray_color)
            
            shapeimage = pil2tensor(shapeimage)
            mask = shapeimage[:, :, :, 0]
            out.append(mask)
        
        return (torch.cat(out, dim=0),)
    
class NormalizedAmplitudeToFloatList:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                    "normalized_amp": ("NORMALIZED_AMPLITUDE",),
                     },}

    CATEGORY = "KJNodes/audio"
    RETURN_TYPES = ("FLOAT",)
    FUNCTION = "convert"
    DESCRIPTION = """
Works as a bridge to the AudioScheduler -nodes:  
https://github.com/a1lazydog/ComfyUI-AudioScheduler  
Creates a list of floats from the normalized amplitude.
"""

    def convert(self, normalized_amp):
        # Ensure normalized_amp is an array and within the range [0, 1]
        normalized_amp = np.clip(normalized_amp, 0.0, 1.0)
        return (normalized_amp.tolist(),)

class OffsetMaskByNormalizedAmplitude:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "normalized_amp": ("NORMALIZED_AMPLITUDE",),
                "mask": ("MASK",),
                "x": ("INT", { "default": 0, "min": -4096, "max": MAX_RESOLUTION, "step": 1, "display": "number" }),
                "y": ("INT", { "default": 0, "min": -4096, "max": MAX_RESOLUTION, "step": 1, "display": "number" }),
                "rotate": ("BOOLEAN", { "default": False }),
                "angle_multiplier": ("FLOAT", { "default": 0.0, "min": -1.0, "max": 1.0, "step": 0.001, "display": "number" }),
            }
        }

    RETURN_TYPES = ("MASK",)
    RETURN_NAMES = ("mask",)
    FUNCTION = "offset"
    CATEGORY = "KJNodes/audio"
    DESCRIPTION = """
Works as a bridge to the AudioScheduler -nodes:  
https://github.com/a1lazydog/ComfyUI-AudioScheduler  
Offsets masks based on the normalized amplitude.
"""

    def offset(self, mask, x, y, angle_multiplier, rotate, normalized_amp):

         # Ensure normalized_amp is an array and within the range [0, 1]
        offsetmask = mask.clone()
        normalized_amp = np.clip(normalized_amp, 0.0, 1.0)
       
        batch_size, height, width = mask.shape

        if rotate:
            for i in range(batch_size):
                rotation_amp = int(normalized_amp[i] * (360 * angle_multiplier))
                rotation_angle = rotation_amp
                offsetmask[i] = TF.rotate(offsetmask[i].unsqueeze(0), rotation_angle).squeeze(0)
        if x != 0 or y != 0:
            for i in range(batch_size):
                offset_amp = normalized_amp[i] * 10
                shift_x = min(x*offset_amp, width-1)
                shift_y = min(y*offset_amp, height-1)
                if shift_x != 0:
                    offsetmask[i] = torch.roll(offsetmask[i], shifts=int(shift_x), dims=1)
                if shift_y != 0:
                    offsetmask[i] = torch.roll(offsetmask[i], shifts=int(shift_y), dims=0)
        
        return offsetmask,

class ImageTransformByNormalizedAmplitude:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "normalized_amp": ("NORMALIZED_AMPLITUDE",),
            "zoom_scale": ("FLOAT", { "default": 0.0, "min": -1.0, "max": 1.0, "step": 0.001, "display": "number" }),
            "x_offset": ("INT", { "default": 0, "min": (1 -MAX_RESOLUTION), "max": MAX_RESOLUTION, "step": 1, "display": "number" }),
            "y_offset": ("INT", { "default": 0, "min": (1 -MAX_RESOLUTION), "max": MAX_RESOLUTION, "step": 1, "display": "number" }),
            "cumulative": ("BOOLEAN", { "default": False }),
            "image": ("IMAGE",),
        }}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "amptransform"
    CATEGORY = "KJNodes/audio"
    DESCRIPTION = """
Works as a bridge to the AudioScheduler -nodes:  
https://github.com/a1lazydog/ComfyUI-AudioScheduler  
Transforms image based on the normalized amplitude.
"""

    def amptransform(self, image, normalized_amp, zoom_scale, cumulative, x_offset, y_offset):
        # Ensure normalized_amp is an array and within the range [0, 1]
        normalized_amp = np.clip(normalized_amp, 0.0, 1.0)
        transformed_images = []

        # Initialize the cumulative zoom factor
        prev_amp = 0.0

        for i in range(image.shape[0]):
            img = image[i]  # Get the i-th image in the batch
            amp = normalized_amp[i]  # Get the corresponding amplitude value

            # Incrementally increase the cumulative zoom factor
            if cumulative:
                prev_amp += amp
                amp += prev_amp

            # Convert the image tensor from BxHxWxC to CxHxW format expected by torchvision
            img = img.permute(2, 0, 1)
            
            # Convert PyTorch tensor to PIL Image for processing
            pil_img = TF.to_pil_image(img)
            
            # Calculate the crop size based on the amplitude
            width, height = pil_img.size
            crop_size = int(min(width, height) * (1 - amp * zoom_scale))
            crop_size = max(crop_size, 1)
            
            # Calculate the crop box coordinates (centered crop)
            left = (width - crop_size) // 2
            top = (height - crop_size) // 2
            right = (width + crop_size) // 2
            bottom = (height + crop_size) // 2
            
            # Crop and resize back to original size
            cropped_img = TF.crop(pil_img, top, left, crop_size, crop_size)
            resized_img = TF.resize(cropped_img, (height, width))
            
            # Convert back to tensor in CxHxW format
            tensor_img = TF.to_tensor(resized_img)
            
            # Convert the tensor back to BxHxWxC format
            tensor_img = tensor_img.permute(1, 2, 0)
            
            # Offset the image based on the amplitude
            offset_amp = amp * 10  # Calculate the offset magnitude based on the amplitude
            shift_x = min(x_offset * offset_amp, img.shape[1] - 1)  # Calculate the shift in x direction
            shift_y = min(y_offset * offset_amp, img.shape[0] - 1)  # Calculate the shift in y direction

            # Apply the offset to the image tensor
            if shift_x != 0:
                tensor_img = torch.roll(tensor_img, shifts=int(shift_x), dims=1)
            if shift_y != 0:
                tensor_img = torch.roll(tensor_img, shifts=int(shift_y), dims=0)

            # Add to the list
            transformed_images.append(tensor_img)
        
        # Stack all transformed images into a batch
        transformed_batch = torch.stack(transformed_images)
        
        return (transformed_batch,)