Spaces:
Sleeping
Sleeping
File size: 4,877 Bytes
4450790 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
import os
import torch
from nodes import MAX_RESOLUTION
import torchvision.transforms.v2 as T
from .utils import FONTS_DIR
class DrawText:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"text": ("STRING", { "multiline": True, "dynamicPrompts": True, "default": "Hello, World!" }),
"font": (sorted([f for f in os.listdir(FONTS_DIR) if f.endswith('.ttf') or f.endswith('.otf')]), ),
"size": ("INT", { "default": 56, "min": 1, "max": 9999, "step": 1 }),
"color": ("STRING", { "multiline": False, "default": "#FFFFFF" }),
"background_color": ("STRING", { "multiline": False, "default": "#00000000" }),
"shadow_distance": ("INT", { "default": 0, "min": 0, "max": 100, "step": 1 }),
"shadow_blur": ("INT", { "default": 0, "min": 0, "max": 100, "step": 1 }),
"shadow_color": ("STRING", { "multiline": False, "default": "#000000" }),
"horizontal_align": (["left", "center", "right"],),
"vertical_align": (["top", "center", "bottom"],),
"offset_x": ("INT", { "default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 1 }),
"offset_y": ("INT", { "default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 1 }),
"direction": (["ltr", "rtl"],),
},
"optional": {
"img_composite": ("IMAGE",),
},
}
RETURN_TYPES = ("IMAGE", "MASK",)
FUNCTION = "execute"
CATEGORY = "essentials/text"
def execute(self, text, font, size, color, background_color, shadow_distance, shadow_blur, shadow_color, horizontal_align, vertical_align, offset_x, offset_y, direction, img_composite=None):
from PIL import Image, ImageDraw, ImageFont, ImageColor, ImageFilter
font = ImageFont.truetype(os.path.join(FONTS_DIR, font), size)
lines = text.split("\n")
if direction == "rtl":
lines = [line[::-1] for line in lines]
# Calculate the width and height of the text
text_width = max(font.getbbox(line)[2] for line in lines)
line_height = font.getmask(text).getbbox()[3] + font.getmetrics()[1] # add descent to height
text_height = line_height * len(lines)
if img_composite is not None:
img_composite = T.ToPILImage()(img_composite.permute([0,3,1,2])[0]).convert('RGBA')
width = img_composite.width
height = img_composite.height
image = Image.new('RGBA', (width, height), color=background_color)
else:
width = text_width
height = text_height
background_color = ImageColor.getrgb(background_color)
image = Image.new('RGBA', (width + shadow_distance, height + shadow_distance), color=background_color)
image_shadow = None
if shadow_distance > 0:
image_shadow = image.copy()
#image_shadow = Image.new('RGBA', (width + shadow_distance, height + shadow_distance), color=background_color)
for i, line in enumerate(lines):
line_width = font.getbbox(line)[2]
#text_height =font.getbbox(line)[3]
if horizontal_align == "left":
x = 0
elif horizontal_align == "center":
x = (width - line_width) / 2
elif horizontal_align == "right":
x = width - line_width
if vertical_align == "top":
y = 0
elif vertical_align == "center":
y = (height - text_height) / 2
elif vertical_align == "bottom":
y = height - text_height
x += offset_x
y += i * line_height + offset_y
draw = ImageDraw.Draw(image)
draw.text((x, y), line, font=font, fill=color)
if image_shadow is not None:
draw = ImageDraw.Draw(image_shadow)
draw.text((x + shadow_distance, y + shadow_distance), line, font=font, fill=shadow_color)
if image_shadow is not None:
image_shadow = image_shadow.filter(ImageFilter.GaussianBlur(shadow_blur))
image = Image.alpha_composite(image_shadow, image)
#image = T.ToTensor()(image).unsqueeze(0).permute([0,2,3,1])
mask = T.ToTensor()(image).unsqueeze(0).permute([0,2,3,1])
mask = mask[:, :, :, 3] if mask.shape[3] == 4 else torch.ones_like(mask[:, :, :, 0])
if img_composite is not None:
image = Image.alpha_composite(img_composite, image)
image = T.ToTensor()(image).unsqueeze(0).permute([0,2,3,1])
return (image[:, :, :, :3], mask,)
TEXT_CLASS_MAPPINGS = {
"DrawText+": DrawText,
}
TEXT_NAME_MAPPINGS = {
"DrawText+": "🔧 Draw Text",
} |