Spaces:
Sleeping
Sleeping
File size: 33,487 Bytes
4450790 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 |
from io import BytesIO
import cv2
import numpy as np
import torch
from PIL import Image
from ..log import log
from ..utils import EASINGS, apply_easing, pil2tensor
from .transform import MTB_TransformImage
def hex_to_rgb(hex_color: str, bgr: bool = False):
hex_color = hex_color.lstrip("#")
if bgr:
return tuple(int(hex_color[i : i + 2], 16) for i in (4, 2, 0))
return tuple(int(hex_color[i : i + 2], 16) for i in (0, 2, 4))
class MTB_BatchFloatMath:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"reverse": ("BOOLEAN", {"default": False}),
"operation": (
["add", "sub", "mul", "div", "pow", "abs"],
{"default": "add"},
),
}
}
RETURN_TYPES = ("FLOATS",)
CATEGORY = "mtb/utils"
FUNCTION = "execute"
def execute(self, reverse: bool, operation: str, **kwargs: list[float]):
res: list[float] = []
vals = list(kwargs.values())
if reverse:
vals = vals[::-1]
ref_count = len(vals[0])
for v in vals:
if len(v) != ref_count:
raise ValueError(
f"All values must have the same length (current: {len(v)}, ref: {ref_count}"
)
match operation:
case "add":
for i in range(ref_count):
result = sum(v[i] for v in vals)
res.append(result)
case "sub":
for i in range(ref_count):
result = vals[0][i] - sum(v[i] for v in vals[1:])
res.append(result)
case "mul":
for i in range(ref_count):
result = vals[0][i] * vals[1][i]
res.append(result)
case "div":
for i in range(ref_count):
result = vals[0][i] / vals[1][i]
res.append(result)
case "pow":
for i in range(ref_count):
result: float = vals[0][i] ** vals[1][i]
res.append(result)
case "abs":
for i in range(ref_count):
result = abs(vals[0][i])
res.append(result)
case _:
log.info(f"For now this mode ({operation}) is not implemented")
return (res,)
class MTB_BatchFloatNormalize:
"""Normalize the values in the list of floats"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {"floats": ("FLOATS",)},
}
RETURN_TYPES = ("FLOATS",)
RETURN_NAMES = ("normalized_floats",)
CATEGORY = "mtb/batch"
FUNCTION = "execute"
def execute(
self,
floats: list[float],
):
min_value = min(floats)
max_value = max(floats)
normalized_floats = [
(x - min_value) / (max_value - min_value) for x in floats
]
log.debug(f"Floats: {floats}")
log.debug(f"Normalized Floats: {normalized_floats}")
return (normalized_floats,)
class MTB_BatchTimeWrap:
"""Remap a batch using a time curve (FLOATS)"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"target_count": ("INT", {"default": 25, "min": 2}),
"frames": ("IMAGE",),
"curve": ("FLOATS",),
},
}
RETURN_TYPES = ("IMAGE", "FLOATS")
RETURN_NAMES = ("image", "interpolated_floats")
CATEGORY = "mtb/batch"
FUNCTION = "execute"
def execute(
self, target_count: int, frames: torch.Tensor, curve: list[float]
):
"""Apply time warping to a list of video frames based on a curve."""
log.debug(f"Input frames shape: {frames.shape}")
log.debug(f"Curve: {curve}")
total_duration = sum(curve)
log.debug(f"Total duration: {total_duration}")
B, H, W, C = frames.shape
log.debug(f"Batch Size: {B}")
normalized_times = np.linspace(0, 1, target_count)
interpolated_curve = np.interp(
normalized_times, np.linspace(0, 1, len(curve)), curve
).tolist()
log.debug(f"Interpolated curve: {interpolated_curve}")
interpolated_frame_indices = [
(B - 1) * value for value in interpolated_curve
]
log.debug(f"Interpolated frame indices: {interpolated_frame_indices}")
rounded_indices = [
int(round(idx)) for idx in interpolated_frame_indices
]
rounded_indices = np.clip(rounded_indices, 0, B - 1)
# Gather frames based on interpolated indices
warped_frames = []
for index in rounded_indices:
warped_frames.append(frames[index].unsqueeze(0))
warped_tensor = torch.cat(warped_frames, dim=0)
log.debug(f"Warped frames shape: {warped_tensor.shape}")
return (warped_tensor, interpolated_curve)
class MTB_BatchMake:
"""Simply duplicates the input frame as a batch"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"count": ("INT", {"default": 1}),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "generate_batch"
CATEGORY = "mtb/batch"
def generate_batch(self, image: torch.Tensor, count):
if len(image.shape) == 3:
image = image.unsqueeze(0)
return (image.repeat(count, 1, 1, 1),)
class MTB_BatchShape:
"""Generates a batch of 2D shapes with optional shading (experimental)"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"count": ("INT", {"default": 1}),
"shape": (
["Box", "Circle", "Diamond", "Tube"],
{"default": "Circle"},
),
"image_width": ("INT", {"default": 512}),
"image_height": ("INT", {"default": 512}),
"shape_size": ("INT", {"default": 100}),
"color": ("COLOR", {"default": "#ffffff"}),
"bg_color": ("COLOR", {"default": "#000000"}),
"shade_color": ("COLOR", {"default": "#000000"}),
"thickness": ("INT", {"default": 5}),
"shadex": ("FLOAT", {"default": 0.0}),
"shadey": ("FLOAT", {"default": 0.0}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "generate_shapes"
CATEGORY = "mtb/batch"
def generate_shapes(
self,
count,
shape,
image_width,
image_height,
shape_size,
color,
bg_color,
shade_color,
thickness,
shadex,
shadey,
):
log.debug(f"COLOR: {color}")
log.debug(f"BG_COLOR: {bg_color}")
log.debug(f"SHADE_COLOR: {shade_color}")
# Parse color input to BGR tuple for OpenCV
color = hex_to_rgb(color)
bg_color = hex_to_rgb(bg_color)
shade_color = hex_to_rgb(shade_color)
res = []
for x in range(count):
# Initialize an image canvas
canvas = np.full(
(image_height, image_width, 3), bg_color, dtype=np.uint8
)
mask = np.zeros((image_height, image_width), dtype=np.uint8)
# Compute the center point of the shape
center = (image_width // 2, image_height // 2)
if shape == "Box":
half_size = shape_size // 2
top_left = (center[0] - half_size, center[1] - half_size)
bottom_right = (center[0] + half_size, center[1] + half_size)
cv2.rectangle(mask, top_left, bottom_right, 255, -1)
elif shape == "Circle":
cv2.circle(mask, center, shape_size // 2, 255, -1)
elif shape == "Diamond":
pts = np.array(
[
[center[0], center[1] - shape_size // 2],
[center[0] + shape_size // 2, center[1]],
[center[0], center[1] + shape_size // 2],
[center[0] - shape_size // 2, center[1]],
]
)
cv2.fillPoly(mask, [pts], 255)
elif shape == "Tube":
cv2.ellipse(
mask,
center,
(shape_size // 2, shape_size // 2),
0,
0,
360,
255,
thickness,
)
# Color the shape
canvas[mask == 255] = color
# Apply shading effects to a separate shading canvas
shading = np.zeros_like(canvas, dtype=np.float32)
shading[:, :, 0] = shadex * np.linspace(0, 1, image_width)
shading[:, :, 1] = shadey * np.linspace(
0, 1, image_height
).reshape(-1, 1)
shading_canvas = cv2.addWeighted(
canvas.astype(np.float32), 1, shading, 1, 0
).astype(np.uint8)
# Apply shading only to the shape area using the mask
canvas[mask == 255] = shading_canvas[mask == 255]
res.append(canvas)
return (pil2tensor(res),)
class MTB_BatchFloatFill:
"""Fills a batch float with a single value until it reaches the target length"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"floats": ("FLOATS",),
"direction": (["head", "tail"], {"default": "tail"}),
"value": ("FLOAT", {"default": 0.0}),
"count": ("INT", {"default": 1}),
}
}
FUNCTION = "fill_floats"
RETURN_TYPES = ("FLOATS",)
CATEGORY = "mtb/batch"
def fill_floats(self, floats, direction, value, count):
size = len(floats)
if size > count:
raise ValueError(
f"Size ({size}) is less then target count ({count})"
)
rem = count - size
if direction == "tail":
floats = floats + [value] * rem
else:
floats = [value] * rem + floats
return (floats,)
class MTB_BatchFloatAssemble:
"""Assembles mutiple batches of floats into a single stream (batch)"""
@classmethod
def INPUT_TYPES(cls):
return {"required": {"reverse": ("BOOLEAN", {"default": False})}}
RETURN_TYPES = ("FLOATS",)
CATEGORY = "mtb/batch"
FUNCTION = "assemble_floats"
def assemble_floats(self, reverse: bool, **kwargs: list[float]):
res: list[float] = []
if reverse:
for x in reversed(kwargs.values()):
if x:
res += x
else:
for x in kwargs.values():
if x:
res += x
return (res,)
class MTB_BatchFloat:
"""Generates a batch of float values with interpolation"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"mode": (
["Single", "Steps"],
{"default": "Steps"},
),
"count": ("INT", {"default": 2}),
"min": ("FLOAT", {"default": 0.0, "step": 0.001}),
"max": ("FLOAT", {"default": 1.0, "step": 0.001}),
"easing": (
[
"Linear",
"Sine In",
"Sine Out",
"Sine In/Out",
"Quart In",
"Quart Out",
"Quart In/Out",
"Cubic In",
"Cubic Out",
"Cubic In/Out",
"Circ In",
"Circ Out",
"Circ In/Out",
"Back In",
"Back Out",
"Back In/Out",
"Elastic In",
"Elastic Out",
"Elastic In/Out",
"Bounce In",
"Bounce Out",
"Bounce In/Out",
],
{"default": "Linear"},
),
}
}
FUNCTION = "set_floats"
RETURN_TYPES = ("FLOATS",)
CATEGORY = "mtb/batch"
def set_floats(self, mode, count, min, max, easing):
if mode == "Steps" and count == 1:
raise ValueError(
"Steps mode requires at least a count of 2 values"
)
keyframes = []
if mode == "Single":
keyframes = [min] * count
return (keyframes,)
for i in range(count):
normalized_step = i / (count - 1)
eased_step = apply_easing(normalized_step, easing)
eased_value = min + (max - min) * eased_step
keyframes.append(eased_value)
return (keyframes,)
class MTB_BatchMerge:
"""Merges multiple image batches with different frame counts"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"fusion_mode": (
["add", "multiply", "average"],
{"default": "average"},
),
"fill": (["head", "tail"], {"default": "tail"}),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "merge_batches"
CATEGORY = "mtb/batch"
def merge_batches(self, fusion_mode: str, fill: str, **kwargs):
images = kwargs.values()
max_frames = max(img.shape[0] for img in images)
adjusted_images = []
for img in images:
frame_count = img.shape[0]
if frame_count < max_frames:
fill_frame = img[0] if fill == "head" else img[-1]
fill_frames = fill_frame.repeat(
max_frames - frame_count, 1, 1, 1
)
adjusted_batch = (
torch.cat((fill_frames, img), dim=0)
if fill == "head"
else torch.cat((img, fill_frames), dim=0)
)
else:
adjusted_batch = img
adjusted_images.append(adjusted_batch)
# Merge the adjusted batches
merged_image = None
for img in adjusted_images:
if merged_image is None:
merged_image = img
else:
if fusion_mode == "add":
merged_image += img
elif fusion_mode == "multiply":
merged_image *= img
elif fusion_mode == "average":
merged_image = (merged_image + img) / 2
return (merged_image,)
class MTB_Batch2dTransform:
"""Transform a batch of images using a batch of keyframes"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"border_handling": (
["edge", "constant", "reflect", "symmetric"],
{"default": "edge"},
),
"constant_color": ("COLOR", {"default": "#000000"}),
},
"optional": {
"x": ("FLOATS",),
"y": ("FLOATS",),
"zoom": ("FLOATS",),
"angle": ("FLOATS",),
"shear": ("FLOATS",),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "transform_batch"
CATEGORY = "mtb/batch"
def get_num_elements(
self, param: None | torch.Tensor | list[torch.Tensor] | list[float]
) -> int:
if isinstance(param, torch.Tensor):
return torch.numel(param)
elif isinstance(param, list):
return len(param)
return 0
def transform_batch(
self,
image: torch.Tensor,
border_handling: str,
constant_color: str,
x: list[float] | None = None,
y: list[float] | None = None,
zoom: list[float] | None = None,
angle: list[float] | None = None,
shear: list[float] | None = None,
):
if all(
self.get_num_elements(param) <= 0
for param in [x, y, zoom, angle, shear]
):
raise ValueError(
"At least one transform parameter must be provided"
)
keyframes: dict[str, list[float]] = {
"x": [],
"y": [],
"zoom": [],
"angle": [],
"shear": [],
}
default_vals = {"x": 0, "y": 0, "zoom": 1.0, "angle": 0, "shear": 0}
if x and self.get_num_elements(x) > 0:
keyframes["x"] = x
if y and self.get_num_elements(y) > 0:
keyframes["y"] = y
if zoom and self.get_num_elements(zoom) > 0:
# some easing types like elastic can pull back... maybe it should abs the value?
keyframes["zoom"] = [max(x, 0.00001) for x in zoom]
if angle and self.get_num_elements(angle) > 0:
keyframes["angle"] = angle
if shear and self.get_num_elements(shear) > 0:
keyframes["shear"] = shear
for name, values in keyframes.items():
count = len(values)
if count > 0 and count != image.shape[0]:
raise ValueError(
f"Length of {name} values ({count}) must match number of images ({image.shape[0]})"
)
if count == 0:
keyframes[name] = [default_vals[name]] * image.shape[0]
transformer = MTB_TransformImage()
res = [
transformer.transform(
image[i].unsqueeze(0),
keyframes["x"][i],
keyframes["y"][i],
keyframes["zoom"][i],
keyframes["angle"][i],
keyframes["shear"][i],
border_handling,
constant_color,
)[0]
for i in range(image.shape[0])
]
return (torch.cat(res, dim=0),)
class MTB_BatchFloatFit:
"""Fit a list of floats using a source and target range"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"values": ("FLOATS", {"forceInput": True}),
"clamp": ("BOOLEAN", {"default": False}),
"auto_compute_source": ("BOOLEAN", {"default": False}),
"source_min": ("FLOAT", {"default": 0.0, "step": 0.01}),
"source_max": ("FLOAT", {"default": 1.0, "step": 0.01}),
"target_min": ("FLOAT", {"default": 0.0, "step": 0.01}),
"target_max": ("FLOAT", {"default": 1.0, "step": 0.01}),
"easing": (
EASINGS,
{"default": "Linear"},
),
}
}
FUNCTION = "fit_range"
RETURN_TYPES = ("FLOATS",)
CATEGORY = "mtb/batch"
DESCRIPTION = "Fit a list of floats using a source and target range"
def fit_range(
self,
values: list[float],
clamp: bool,
auto_compute_source: bool,
source_min: float,
source_max: float,
target_min: float,
target_max: float,
easing: str,
):
if auto_compute_source:
source_min = min(values)
source_max = max(values)
from .graph_utils import MTB_FitNumber
res = []
fit_number = MTB_FitNumber()
for value in values:
(transformed_value,) = fit_number.set_range(
value,
clamp,
source_min,
source_max,
target_min,
target_max,
easing,
)
res.append(transformed_value)
return (res,)
class MTB_PlotBatchFloat:
"""Plot floats"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"width": ("INT", {"default": 768}),
"height": ("INT", {"default": 768}),
"point_size": ("INT", {"default": 4}),
"seed": ("INT", {"default": 1}),
"start_at_zero": ("BOOLEAN", {"default": False}),
}
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("plot",)
FUNCTION = "plot"
CATEGORY = "mtb/batch"
def plot(
self,
width: int,
height: int,
point_size: int,
seed: int,
start_at_zero: bool,
interactive_backend: bool = False,
**kwargs,
):
import matplotlib
# NOTE: This is for notebook usage or tests, i.e not exposed to comfy that should always use Agg
if not interactive_backend:
matplotlib.use("Agg")
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(width / 100, height / 100), dpi=100)
fig.set_edgecolor("black")
fig.patch.set_facecolor("#2e2e2e")
# Setting background color and grid
ax.set_facecolor("#2e2e2e") # Dark gray background
ax.grid(color="gray", linestyle="-", linewidth=0.5, alpha=0.5)
# Finding global min and max across all lists for scaling the plot
all_values = [value for values in kwargs.values() for value in values]
global_min = min(all_values)
global_max = max(all_values)
y_padding = 0.05 * (global_max - global_min)
ax.set_ylim(global_min - y_padding, global_max + y_padding)
max_length = max(len(values) for values in kwargs.values())
if start_at_zero:
x_values = np.linspace(0, max_length - 1, max_length)
else:
x_values = np.linspace(1, max_length, max_length)
ax.set_xlim(1, max_length) # Set X-axis limits
np.random.seed(seed)
colors = np.random.rand(len(kwargs), 3) # Generate random RGB values
for color, (label, values) in zip(colors, kwargs.items()):
ax.plot(x_values[: len(values)], values, label=label, color=color)
ax.legend(
title="Legend",
title_fontsize="large",
fontsize="medium",
edgecolor="black",
loc="best",
)
# Setting labels and title
ax.set_xlabel("Time", fontsize="large", color="white")
ax.set_ylabel("Value", fontsize="large", color="white")
ax.set_title(
"Plot of Values over Time", fontsize="x-large", color="white"
)
# Adjusting tick colors to be visible on dark background
ax.tick_params(colors="white")
# Changing color of the axes border
for _, spine in ax.spines.items():
spine.set_edgecolor("white")
# Rendering the plot into a NumPy array
buf = BytesIO()
plt.savefig(buf, format="png", bbox_inches="tight")
buf.seek(0)
image = Image.open(buf)
plt.close(fig) # Closing the figure to free up memory
return (pil2tensor(image),)
def draw_point(self, image, point, color, point_size):
x, y = point
y = image.shape[0] - 1 - y # Invert Y-coordinate
half_size = point_size // 2
x_start, x_end = (
max(0, x - half_size),
min(image.shape[1], x + half_size + 1),
)
y_start, y_end = (
max(0, y - half_size),
min(image.shape[0], y + half_size + 1),
)
image[y_start:y_end, x_start:x_end] = color
def draw_line(self, image, start, end, color):
x1, y1 = start
x2, y2 = end
# Invert Y-coordinate
y1 = image.shape[0] - 1 - y1
y2 = image.shape[0] - 1 - y2
dx = x2 - x1
dy = y2 - y1
is_steep = abs(dy) > abs(dx)
if is_steep:
x1, y1 = y1, x1
x2, y2 = y2, x2
swapped = False
if x1 > x2:
x1, x2 = x2, x1
y1, y2 = y2, y1
swapped = True
dx = x2 - x1
dy = y2 - y1
error = int(dx / 2.0)
y = y1
ystep = None
if y1 < y2:
ystep = 1
else:
ystep = -1
for x in range(x1, x2 + 1):
coord = (y, x) if is_steep else (x, y)
image[coord] = color
error -= abs(dy)
if error < 0:
y += ystep
error += dx
if swapped:
image[(x1, y1)] = color
image[(x2, y2)] = color
DEFAULT_INTERPOLANT = lambda t: t * t * t * (t * (t * 6 - 15) + 10)
class MTB_BatchShake:
"""Applies a shaking effect to batches of images."""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"images": ("IMAGE",),
"position_amount_x": ("FLOAT", {"default": 1.0}),
"position_amount_y": ("FLOAT", {"default": 1.0}),
"rotation_amount": ("FLOAT", {"default": 10.0}),
"frequency": ("FLOAT", {"default": 1.0, "min": 0.005}),
"frequency_divider": ("FLOAT", {"default": 1.0, "min": 0.005}),
"octaves": ("INT", {"default": 1, "min": 1}),
"seed": ("INT", {"default": 0}),
},
}
RETURN_TYPES = ("IMAGE", "FLOATS", "FLOATS", "FLOATS")
RETURN_NAMES = ("image", "pos_x", "pos_y", "rot")
FUNCTION = "apply_shake"
CATEGORY = "mtb/batch"
# def interpolant(self, t):
# return t * t * t * (t * (t * 6 - 15) + 10)
def generate_perlin_noise_2d(
self, shape, res, tileable=(False, False), interpolant=None
):
"""Generate a 2D numpy array of perlin noise.
Args:
shape: The shape of the generated array (tuple of two ints).
This must be a multple of res.
res: The number of periods of noise to generate along each
axis (tuple of two ints). Note shape must be a multiple of
res.
tileable: If the noise should be tileable along each axis
(tuple of two bools). Defaults to (False, False).
interpolant: The interpolation function, defaults to
t*t*t*(t*(t*6 - 15) + 10).
Returns
-------
A numpy array of shape shape with the generated noise.
Raises
------
ValueError: If shape is not a multiple of res.
"""
interpolant = interpolant or DEFAULT_INTERPOLANT
delta = (res[0] / shape[0], res[1] / shape[1])
d = (shape[0] // res[0], shape[1] // res[1])
grid = (
np.mgrid[0 : res[0] : delta[0], 0 : res[1] : delta[1]].transpose(
1, 2, 0
)
% 1
)
# Gradients
angles = 2 * np.pi * np.random.rand(res[0] + 1, res[1] + 1)
gradients = np.dstack((np.cos(angles), np.sin(angles)))
if tileable[0]:
gradients[-1, :] = gradients[0, :]
if tileable[1]:
gradients[:, -1] = gradients[:, 0]
gradients = gradients.repeat(d[0], 0).repeat(d[1], 1)
g00 = gradients[: -d[0], : -d[1]]
g10 = gradients[d[0] :, : -d[1]]
g01 = gradients[: -d[0], d[1] :]
g11 = gradients[d[0] :, d[1] :]
# Ramps
n00 = np.sum(np.dstack((grid[:, :, 0], grid[:, :, 1])) * g00, 2)
n10 = np.sum(np.dstack((grid[:, :, 0] - 1, grid[:, :, 1])) * g10, 2)
n01 = np.sum(np.dstack((grid[:, :, 0], grid[:, :, 1] - 1)) * g01, 2)
n11 = np.sum(
np.dstack((grid[:, :, 0] - 1, grid[:, :, 1] - 1)) * g11, 2
)
# Interpolation
t = interpolant(grid)
n0 = n00 * (1 - t[:, :, 0]) + t[:, :, 0] * n10
n1 = n01 * (1 - t[:, :, 0]) + t[:, :, 0] * n11
return np.sqrt(2) * ((1 - t[:, :, 1]) * n0 + t[:, :, 1] * n1)
def generate_fractal_noise_2d(
self,
shape,
res,
octaves=1,
persistence=0.5,
lacunarity=2,
tileable=(True, True),
interpolant=None,
):
"""Generate a 2D numpy array of fractal noise.
Args:
shape: The shape of the generated array (tuple of two ints).
This must be a multiple of lacunarity**(octaves-1)*res.
res: The number of periods of noise to generate along each
axis (tuple of two ints). Note shape must be a multiple of
(lacunarity**(octaves-1)*res).
octaves: The number of octaves in the noise. Defaults to 1.
persistence: The scaling factor between two octaves.
lacunarity: The frequency factor between two octaves.
tileable: If the noise should be tileable along each axis
(tuple of two bools). Defaults to (True,True).
interpolant: The, interpolation function, defaults to
t*t*t*(t*(t*6 - 15) + 10).
Returns
-------
A numpy array of fractal noise and of shape shape generated by
combining several octaves of perlin noise.
Raises
------
ValueError: If shape is not a multiple of
(lacunarity**(octaves-1)*res).
"""
interpolant = interpolant or DEFAULT_INTERPOLANT
noise = np.zeros(shape)
frequency = 1
amplitude = 1
for _ in range(octaves):
noise += amplitude * self.generate_perlin_noise_2d(
shape,
(frequency * res[0], frequency * res[1]),
tileable,
interpolant,
)
frequency *= lacunarity
amplitude *= persistence
return noise
def fbm(self, x, y, octaves):
# noise_2d = self.generate_fractal_noise_2d((256, 256), (8, 8), octaves)
# Now, extract a single noise value based on x and y, wrapping indices if necessary
x_idx = int(x) % 256
y_idx = int(y) % 256
return self.noise_pattern[x_idx, y_idx]
def apply_shake(
self,
images,
position_amount_x,
position_amount_y,
rotation_amount,
frequency,
frequency_divider,
octaves,
seed,
):
# Rehash
np.random.seed(seed)
self.position_offset = np.random.uniform(-1e3, 1e3, 3)
self.rotation_offset = np.random.uniform(-1e3, 1e3, 3)
self.noise_pattern = self.generate_perlin_noise_2d(
(512, 512), (32, 32), (True, True)
)
# Assuming frame count is derived from the first dimension of images tensor
frame_count = images.shape[0]
frequency = frequency / frequency_divider
# Generate shaking parameters for each frame
x_translations = []
y_translations = []
rotations = []
for frame_num in range(frame_count):
time = frame_num * frequency
x_idx = (self.position_offset[0] + frame_num) % 256
y_idx = (self.position_offset[1] + frame_num) % 256
np_position = np.array(
[
self.fbm(x_idx, time, octaves),
self.fbm(y_idx, time, octaves),
]
)
# np_position = np.array(
# [
# self.fbm(self.position_offset[0] + frame_num, time, octaves),
# self.fbm(self.position_offset[1] + frame_num, time, octaves),
# ]
# )
# np_rotation = self.fbm(self.rotation_offset[2] + frame_num, time, octaves)
rot_idx = (self.rotation_offset[2] + frame_num) % 256
np_rotation = self.fbm(rot_idx, time, octaves)
x_translations.append(np_position[0] * position_amount_x)
y_translations.append(np_position[1] * position_amount_y)
rotations.append(np_rotation * rotation_amount)
# Convert lists to tensors
# x_translations = torch.tensor(x_translations, dtype=torch.float32)
# y_translations = torch.tensor(y_translations, dtype=torch.float32)
# rotations = torch.tensor(rotations, dtype=torch.float32)
# Create an instance of Batch2dTransform
transform = MTB_Batch2dTransform()
log.debug(
f"Applying shaking with parameters: \nposition {position_amount_x}, {position_amount_y}\nrotation {rotation_amount}\nfrequency {frequency}\noctaves {octaves}"
)
# Apply shaking transformations to images
shaken_images = transform.transform_batch(
images,
border_handling="edge", # Assuming edge handling as default
constant_color="#000000", # Assuming black as default constant color
x=x_translations,
y=y_translations,
angle=rotations,
)[0]
return (shaken_images, x_translations, y_translations, rotations)
__nodes__ = [
MTB_BatchFloat,
MTB_Batch2dTransform,
MTB_BatchShape,
MTB_BatchMake,
MTB_BatchFloatAssemble,
MTB_BatchFloatFill,
MTB_BatchFloatNormalize,
MTB_BatchMerge,
MTB_BatchShake,
MTB_PlotBatchFloat,
MTB_BatchTimeWrap,
MTB_BatchFloatFit,
MTB_BatchFloatMath,
]
|