Spaces:
Sleeping
Sleeping
File size: 4,559 Bytes
4450790 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
import copy
import torch
from torch.nn import functional as F
from torch.nn.modules.utils import _pair
from ..log import log
class MTB_VaeDecode:
"""Wrapper for the 2 core decoders but also adding the sd seamless hack, taken from: FlyingFireCo/tiled_ksampler"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"samples": ("LATENT",),
"vae": ("VAE",),
"seamless_model": ("BOOLEAN", {"default": False}),
"use_tiling_decoder": ("BOOLEAN", {"default": True}),
"tile_size": (
"INT",
{"default": 512, "min": 320, "max": 4096, "step": 64},
),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "decode"
CATEGORY = "mtb/decode"
def decode(
self,
vae,
samples,
seamless_model,
use_tiling_decoder=True,
tile_size=512,
):
if seamless_model:
if use_tiling_decoder:
log.error(
"You cannot use seamless mode with tiling decoder together, skipping tiling."
)
use_tiling_decoder = False
for layer in [
layer
for layer in vae.first_stage_model.modules()
if isinstance(layer, torch.nn.Conv2d)
]:
layer.padding_mode = "circular"
if use_tiling_decoder:
return (
vae.decode_tiled(
samples["samples"],
tile_x=tile_size // 8,
tile_y=tile_size // 8,
),
)
else:
return (vae.decode(samples["samples"]),)
def conv_forward(lyr, tensor, weight, bias):
step = lyr.timestep
if (lyr.paddingStartStep < 0 or step >= lyr.paddingStartStep) and (
lyr.paddingStopStep < 0 or step <= lyr.paddingStopStep
):
working = F.pad(tensor, lyr.paddingX, mode=lyr.padding_modeX)
working = F.pad(working, lyr.paddingY, mode=lyr.padding_modeY)
else:
working = F.pad(tensor, lyr.paddingX, mode="constant")
working = F.pad(working, lyr.paddingY, mode="constant")
lyr.timestep += 1
return F.conv2d(
working, weight, bias, lyr.stride, _pair(0), lyr.dilation, lyr.groups
)
class MTB_ModelPatchSeamless:
"""Uses the stable diffusion 'hack' to infer seamless images by setting the model layers padding mode to circular (experimental)"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"model": ("MODEL",),
"startStep": ("INT", {"default": 0}),
"stopStep": ("INT", {"default": 999}),
"tilingX": (
"BOOLEAN",
{"default": True},
),
"tilingY": (
"BOOLEAN",
{"default": True},
),
}
}
RETURN_TYPES = ("MODEL", "MODEL")
RETURN_NAMES = (
"Original Model (passthrough)",
"Patched Model",
)
FUNCTION = "hack"
CATEGORY = "mtb/textures"
def apply_circular(self, model, startStep, stopStep, x, y):
for layer in [
layer
for layer in model.modules()
if isinstance(layer, torch.nn.Conv2d)
]:
layer.padding_modeX = "circular" if x else "constant"
layer.padding_modeY = "circular" if y else "constant"
layer.paddingX = (
layer._reversed_padding_repeated_twice[0],
layer._reversed_padding_repeated_twice[1],
0,
0,
)
layer.paddingY = (
0,
0,
layer._reversed_padding_repeated_twice[2],
layer._reversed_padding_repeated_twice[3],
)
layer.paddingStartStep = startStep
layer.paddingStopStep = stopStep
layer.timestep = 0
layer._conv_forward = conv_forward.__get__(layer, torch.nn.Conv2d)
return model
def hack(
self,
model,
startStep,
stopStep,
tilingX,
tilingY,
):
hacked_model = copy.deepcopy(model)
self.apply_circular(
hacked_model.model, startStep, stopStep, tilingX, tilingY
)
return (model, hacked_model)
__nodes__ = [MTB_ModelPatchSeamless, MTB_VaeDecode]
|