Spaces:
Sleeping
Sleeping
File size: 4,167 Bytes
4450790 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import cv2
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from ..utils import models_dir, np2tensor
# TODO: check if I can make a torch script device independant
# for now I forced it to use cuda.
class MTB_LoadVitMatteModel:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"kind": (("Composition-1K", "Distinctions-646"),),
"autodownload": ("BOOLEAN", {"default": True}),
},
}
RETURN_TYPES = ("VITMATTE_MODEL",)
RETURN_NAMES = ("torch_script",)
CATEGORY = "mtb/vitmatte"
FUNCTION = "execute"
def execute(self, *, kind: str, autodownload: bool):
dest = models_dir / "vitmatte"
dest.mkdir(exist_ok=True)
name = "dist" if kind == "Distinctions-646" else "com"
file = hf_hub_download(
repo_id="melmass/pytorch-scripts",
filename=f"vitmatte_b_{name}.pt",
local_dir=dest.as_posix(),
local_files_only=not autodownload,
)
model = torch.jit.load(file).to("cuda")
return (model,)
class MTB_GenerateTrimap:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
# "image": ("IMAGE",),
"mask": ("MASK",),
"erode": ("INT", {"default": 10}),
"dilate": ("INT", {"default": 10}),
},
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("trimap",)
CATEGORY = "mtb/vitmatte"
FUNCTION = "execute"
def execute(
self,
# image:torch.Tensor,
mask: torch.Tensor,
erode: int = 10,
dilate: int = 10,
):
# TODO: not sure what's the most practical between IMAGE or MASK
# image = image.to("cuda").half()
mask = mask.to("cuda").half()
trimaps = []
for m in mask:
mask_arr = m.squeeze(0).to(torch.uint8).cpu().numpy() * 255
erode_kernel = np.ones((erode, erode), np.uint8)
dilate_kernel = np.ones((dilate, dilate), np.uint8)
eroded = cv2.erode(mask_arr, erode_kernel, iterations=5)
dilated = cv2.dilate(mask_arr, dilate_kernel, iterations=5)
trimap = np.zeros_like(mask_arr)
trimap[dilated == 255] = 128
trimap[eroded == 255] = 255
trimaps.append(trimap)
return (np2tensor(trimaps),)
class MTB_ApplyVitMatte:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"model": ("VITMATTE_MODEL",),
"image": ("IMAGE",),
"trimap": ("IMAGE",),
"returns": (("RGB", "RGBA"),),
},
}
RETURN_TYPES = ("IMAGE", "MASK")
RETURN_NAMES = ("image (rgba)", "mask")
CATEGORY = "mtb/utils"
FUNCTION = "execute"
def execute(
self, model, image: torch.Tensor, trimap: torch.Tensor, returns: str
):
im_count = image.shape[0]
tm_count = trimap.shape[0]
if im_count != tm_count:
raise ValueError("image and trimap must have the same batch size")
outputs_m: list[torch.Tensor] = []
outputs_i: list[torch.Tensor] = []
for i, im in enumerate(image):
tm = trimap[i].half().unsqueeze(2).permute(2, 0, 1).to("cuda")
im = im.half().permute(2, 0, 1).to("cuda")
inputs = {"image": im.unsqueeze(0), "trimap": tm.unsqueeze(0)}
fine_mask = model(inputs)
foreground = im * fine_mask + (1 - fine_mask)
if returns == "RGBA":
rgba_image = torch.cat(
(foreground, fine_mask.unsqueeze(0)), dim=0
)
outputs_i.append(rgba_image.unsqueeze(0))
else:
outputs_i.append(foreground.unsqueeze(0))
outputs_m.append(fine_mask.unsqueeze(0))
result_m = torch.cat(outputs_m, dim=0)
result_i = torch.cat(outputs_i, dim=0)
return (result_i.permute(0, 2, 3, 1), result_m)
__nodes__ = [MTB_LoadVitMatteModel, MTB_GenerateTrimap, MTB_ApplyVitMatte]
|