Spaces:
Starting
on
L40S
Starting
on
L40S
File size: 8,770 Bytes
4450790 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
#---------------------------------------------------------------------------------------------------------------------#
# Comfyroll Studio custom nodes by RockOfFire and Akatsuzi https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes
# for ComfyUI https://github.com/comfyanonymous/ComfyUI
#---------------------------------------------------------------------------------------------------------------------#
import torch
import numpy as np
import folder_paths
from PIL import Image
from ..categories import icons
from .functions_upscale import *
#MAX_RESOLUTION=8192
#---------------------------------------------------------------------------------------------------------------------#
# NODES
#---------------------------------------------------------------------------------------------------------------------#
# These nodes are based on WAS nodes Image Resize and the Comfy Extras upscale with model nodes
class CR_UpscaleImage:
@classmethod
def INPUT_TYPES(s):
resampling_methods = ["lanczos", "nearest", "bilinear", "bicubic"]
return {"required":
{"image": ("IMAGE",),
"upscale_model": (folder_paths.get_filename_list("upscale_models"), ),
"mode": (["rescale", "resize"],),
"rescale_factor": ("FLOAT", {"default": 2, "min": 0.01, "max": 16.0, "step": 0.01}),
"resize_width": ("INT", {"default": 1024, "min": 1, "max": 48000, "step": 1}),
"resampling_method": (resampling_methods,),
"supersample": (["true", "false"],),
"rounding_modulus": ("INT", {"default": 8, "min": 8, "max": 1024, "step": 8}),
}
}
RETURN_TYPES = ("IMAGE", "STRING", )
RETURN_NAMES = ("IMAGE", "show_help", )
FUNCTION = "upscale"
CATEGORY = icons.get("Comfyroll/Upscale")
def upscale(self, image, upscale_model, rounding_modulus=8, loops=1, mode="rescale", supersample='true', resampling_method="lanczos", rescale_factor=2, resize_width=1024):
# Load upscale model
up_model = load_model(upscale_model)
# Upscale with model
up_image = upscale_with_model(up_model, image)
for img in image:
pil_img = tensor2pil(img)
original_width, original_height = pil_img.size
for img in up_image:
# Get new size
pil_img = tensor2pil(img)
upscaled_width, upscaled_height = pil_img.size
show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/Upscale-Nodes#cr-upscale-image"
# Return if no rescale needed
if upscaled_width == original_width and rescale_factor == 1:
return (up_image, show_help)
# Image resize
scaled_images = []
for img in up_image:
scaled_images.append(pil2tensor(apply_resize_image(tensor2pil(img), original_width, original_height, rounding_modulus, mode, supersample, rescale_factor, resize_width, resampling_method)))
images_out = torch.cat(scaled_images, dim=0)
return (images_out, show_help, )
#---------------------------------------------------------------------------------------------------------------------
class CR_MultiUpscaleStack:
@classmethod
def INPUT_TYPES(s):
mix_methods = ["Combine", "Average", "Concatenate"]
up_models = ["None"] + folder_paths.get_filename_list("upscale_models")
return {"required":
{
"switch_1": (["On","Off"],),
"upscale_model_1": (up_models, ),
"rescale_factor_1": ("FLOAT", {"default": 2, "min": 0.01, "max": 16.0, "step": 0.01}),
"switch_2": (["On","Off"],),
"upscale_model_2": (up_models, ),
"rescale_factor_2": ("FLOAT", {"default": 2, "min": 0.01, "max": 16.0, "step": 0.01}),
"switch_3": (["On","Off"],),
"upscale_model_3": (up_models, ),
"rescale_factor_3": ("FLOAT", {"default": 2, "min": 0.01, "max": 16.0, "step": 0.01}),
},
"optional": {"upscale_stack": ("UPSCALE_STACK",),
}
}
RETURN_TYPES = ("UPSCALE_STACK", "STRING", )
RETURN_NAMES = ("UPSCALE_STACK", "show_help", )
FUNCTION = "stack"
CATEGORY = icons.get("Comfyroll/Upscale")
def stack(self, switch_1, upscale_model_1, rescale_factor_1, switch_2, upscale_model_2, rescale_factor_2, switch_3, upscale_model_3, rescale_factor_3, upscale_stack=None):
# Initialise the list
upscale_list=list()
if upscale_stack is not None:
upscale_list.extend([l for l in upscale_stack if l[0] != "None"])
if upscale_model_1 != "None" and switch_1 == "On":
upscale_list.extend([(upscale_model_1, rescale_factor_1)]),
if upscale_model_2 != "None" and switch_2 == "On":
upscale_list.extend([(upscale_model_2, rescale_factor_2)]),
if upscale_model_3 != "None" and switch_3 == "On":
upscale_list.extend([(upscale_model_3, rescale_factor_3)]),
show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/Upscale-Nodes#cr-multi-upscale-stack"
return (upscale_list, show_help, )
#---------------------------------------------------------------------------------------------------------------------
class CR_ApplyMultiUpscale:
@classmethod
def INPUT_TYPES(s):
resampling_methods = ["lanczos", "nearest", "bilinear", "bicubic"]
return {"required": {"image": ("IMAGE",),
"resampling_method": (resampling_methods,),
"supersample": (["true", "false"],),
"rounding_modulus": ("INT", {"default": 8, "min": 8, "max": 1024, "step": 8}),
"upscale_stack": ("UPSCALE_STACK",),
}
}
RETURN_TYPES = ("IMAGE", "STRING", )
RETURN_NAMES = ("IMAGE", "show_help", )
FUNCTION = "apply"
CATEGORY = icons.get("Comfyroll/Upscale")
def apply(self, image, resampling_method, supersample, rounding_modulus, upscale_stack):
# Get original size
pil_img = tensor2pil(image)
original_width, original_height = pil_img.size
# Extend params with upscale-stack items
params = list()
params.extend(upscale_stack)
# Loop through the list
for tup in params:
upscale_model, rescale_factor = tup
print(f"[Info] CR Apply Multi Upscale: Applying {upscale_model} and rescaling by factor {rescale_factor}")
# Load upscale model
up_model = load_model(upscale_model)
# Upscale with model
up_image = upscale_with_model(up_model, image)
# Get new size
pil_img = tensor2pil(up_image)
upscaled_width, upscaled_height = pil_img.size
# Return if no rescale needed
if upscaled_width == original_width and rescale_factor == 1:
image = up_image
else:
# Image resize
scaled_images = []
mode = "rescale"
resize_width = 1024
for img in up_image:
scaled_images.append(pil2tensor(apply_resize_image(tensor2pil(img), original_width, original_height, rounding_modulus, mode, supersample, rescale_factor, resize_width, resampling_method)))
image = torch.cat(scaled_images, dim=0)
show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/Upscale-Nodes#cr-apply-multi-upscale"
return (image, show_help, )
#---------------------------------------------------------------------------------------------------------------------
# MAPPINGS
#---------------------------------------------------------------------------------------------------------------------#
# For reference only, actual mappings are in __init__.py
# 0 nodes released
'''
NODE_CLASS_MAPPINGS = {
# Conditioning
"CR Multi Upscale Stack":CR_MultiUpscaleStack,
"CR Upscale Image":CR_UpscaleImage,
"CR Apply Multi Upscale":CR_ApplyMultiUpscale,
}
'''
|