File size: 10,890 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import csv
import shutil
from pathlib import Path

import folder_paths
import torch

from ..log import log
from ..utils import here

Conditioning = list[tuple[torch.Tensor, dict[str, torch.Tensor]]]


def check_condition(conditioning: Conditioning):
    has_cn = False
    if len(conditioning) > 1:
        log.warn(
            "More than one conditioning was provided. Only the first one will be used."
        )
    first = conditioning[0]
    cond, kwargs = first

    log.debug("Conditioning Shape")
    log.debug(cond.shape)
    log.debug("Conditioning keys")
    log.debug([f"\t{k} - {type(kwargs[k])}" for k in kwargs])
    if "control" in kwargs:
        log.debug("Conditioning contains a controlnet")
        has_cn = True
    if "pooled_output" not in kwargs:
        raise ValueError(
            "Conditioning is not valid. Missing 'pooled_output' key."
        )
    return has_cn


class MTB_InterpolateCondition:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "blend": (
                    "FLOAT",
                    {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01},
                ),
            },
        }

    RETURN_TYPES = ("CONDITIONING",)
    CATEGORY = "mtb/conditioning"
    FUNCTION = "execute"

    def execute(
        self, blend: float, **kwargs: Conditioning
    ) -> tuple[Conditioning]:
        blend = max(0.0, min(1.0, blend))

        conditions: list[Conditioning] = list(kwargs.values())
        num_conditions = len(conditions)

        if num_conditions < 2:
            raise ValueError("At least two conditioning inputs are required.")

        segment_length = 1.0 / (num_conditions - 1)

        segment_index = min(int(blend // segment_length), num_conditions - 2)

        local_blend = (
            blend - (segment_index * segment_length)
        ) / segment_length

        cond_from = conditions[segment_index]
        cond_to = conditions[segment_index + 1]

        from_cn = check_condition(cond_from)
        to_cn = check_condition(cond_to)

        if from_cn and to_cn:
            raise ValueError(
                "Interpolating conditions cannot both contain ControlNets"
            )

        try:
            interpolated_condition = [
                (1.0 - local_blend) * c_from + local_blend * c_to
                for c_from, c_to in zip(
                    cond_from[0][0], cond_to[0][0], strict=False
                )
            ]
        except Exception as e:
            print(f"Error during interpolation: {e}")
            raise

        pooled_from = cond_from[0][1].get(
            "pooled_output",
            torch.zeros_like(
                next(iter(cond_from[0][1].values()), torch.tensor([]))
            ),
        )

        pooled_to = cond_to[0][1].get(
            "pooled_output",
            torch.zeros_like(
                next(iter(cond_from[0][1].values()), torch.tensor([]))
            ),
        )

        interpolated_pooled = (
            1.0 - local_blend
        ) * pooled_from + local_blend * pooled_to

        res = {"pooled_output": interpolated_pooled}

        if from_cn:
            res["control"] = cond_from[0][1]["control"]
            res["control_apply_to_uncond"] = cond_from[0][1][
                "control_apply_to_uncond"
            ]
        if to_cn:
            res["control"] = cond_to[0][1]["control"]
            res["control_apply_to_uncond"] = cond_to[0][1][
                "control_apply_to_uncond"
            ]

        return ([(torch.stack(interpolated_condition), res)],)


class MTB_InterpolateClipSequential:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "base_text": ("STRING", {"multiline": True}),
                "text_to_replace": ("STRING", {"default": ""}),
                "clip": ("CLIP",),
                "interpolation_strength": (
                    "FLOAT",
                    {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01},
                ),
            }
        }

    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "interpolate_encodings_sequential"

    CATEGORY = "mtb/conditioning"

    def interpolate_encodings_sequential(
        self,
        base_text,
        text_to_replace,
        clip,
        interpolation_strength,
        **replacements,
    ):
        log.debug(f"Received interpolation_strength: {interpolation_strength}")

        # - Ensure interpolation strength is within [0, 1]
        interpolation_strength = max(0.0, min(1.0, interpolation_strength))

        # - Check if replacements were provided
        if not replacements:
            raise ValueError("At least one replacement should be provided.")

        num_replacements = len(replacements)
        log.debug(f"Number of replacements: {num_replacements}")

        segment_length = 1.0 / num_replacements
        log.debug(f"Calculated segment_length: {segment_length}")

        # - Find the segment that the interpolation_strength falls into
        segment_index = min(
            int(interpolation_strength // segment_length), num_replacements - 1
        )
        log.debug(f"Segment index: {segment_index}")

        # - Calculate the local strength within the segment
        local_strength = (
            interpolation_strength - (segment_index * segment_length)
        ) / segment_length
        log.debug(f"Local strength: {local_strength}")

        # - If it's the first segment, interpolate between base_text and the first replacement
        if segment_index == 0:
            replacement_text = list(replacements.values())[0]
            log.debug("Using the base text a the base blend")
            # -  Start with the base_text condition
            tokens = clip.tokenize(base_text)
            cond_from, pooled_from = clip.encode_from_tokens(
                tokens, return_pooled=True
            )
        else:
            base_replace = list(replacements.values())[segment_index - 1]
            log.debug(f"Using {base_replace} a the base blend")

            # - Start with the base_text condition replaced by the closest replacement
            tokens = clip.tokenize(
                base_text.replace(text_to_replace, base_replace)
            )
            cond_from, pooled_from = clip.encode_from_tokens(
                tokens, return_pooled=True
            )

            replacement_text = list(replacements.values())[segment_index]

        interpolated_text = base_text.replace(
            text_to_replace, replacement_text
        )
        tokens = clip.tokenize(interpolated_text)
        cond_to, pooled_to = clip.encode_from_tokens(
            tokens, return_pooled=True
        )

        # - Linearly interpolate between the two conditions
        interpolated_condition = (
            1.0 - local_strength
        ) * cond_from + local_strength * cond_to
        interpolated_pooled = (
            1.0 - local_strength
        ) * pooled_from + local_strength * pooled_to

        return (
            [[interpolated_condition, {"pooled_output": interpolated_pooled}]],
        )


class MTB_SmartStep:
    """Utils to control the steps start/stop of the KAdvancedSampler in percentage"""

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "step": (
                    "INT",
                    {"default": 20, "min": 1, "max": 10000, "step": 1},
                ),
                "start_percent": (
                    "INT",
                    {"default": 0, "min": 0, "max": 100, "step": 1},
                ),
                "end_percent": (
                    "INT",
                    {"default": 0, "min": 0, "max": 100, "step": 1},
                ),
            }
        }

    RETURN_TYPES = ("INT", "INT", "INT")
    RETURN_NAMES = ("step", "start", "end")
    FUNCTION = "do_step"
    CATEGORY = "mtb/conditioning"

    def do_step(self, step, start_percent, end_percent):
        start = int(step * start_percent / 100)
        end = int(step * end_percent / 100)

        return (step, start, end)


def install_default_styles(force=False):
    styles_dir = Path(folder_paths.base_path) / "styles"
    styles_dir.mkdir(parents=True, exist_ok=True)
    default_style = here / "styles.csv"
    dest_style = styles_dir / "default.csv"

    if force or not dest_style.exists():
        log.debug(f"Copying default style to {dest_style}")
        shutil.copy2(default_style.as_posix(), dest_style.as_posix())

    return dest_style


class MTB_StylesLoader:
    """Load csv files and populate a dropdown from the rows (ร  la A111)"""

    options = {}

    @classmethod
    def INPUT_TYPES(cls):
        if not cls.options:
            input_dir = Path(folder_paths.base_path) / "styles"
            if not input_dir.exists():
                install_default_styles()

            if not (
                files := [f for f in input_dir.iterdir() if f.suffix == ".csv"]
            ):
                log.warn(
                    "No styles found in the styles folder, place at least one csv file in the styles folder at the root of ComfyUI (for instance ComfyUI/styles/mystyle.csv)"
                )

            for file in files:
                with open(file, encoding="utf8") as f:
                    parsed = csv.reader(f)
                    for i, row in enumerate(parsed):
                        # log.debug(f"Adding style {row[0]}")
                        try:
                            name, positive, negative = (row + [None] * 3)[:3]
                            positive = positive or ""
                            negative = negative or ""
                            if name is not None:
                                cls.options[name] = (positive, negative)
                            else:
                                # Handle the case where 'name' is None
                                log.warning(f"Missing 'name' in row {i}.")

                        except Exception as e:
                            log.warning(
                                f"There was an error while parsing {file}, make sure it respects A1111 format, i.e 3 columns name, positive, negative:\n{e}"
                            )
                            continue

        else:
            log.debug(f"Using cached styles (count: {len(cls.options)})")

        return {
            "required": {
                "style_name": (list(cls.options.keys()),),
            }
        }

    CATEGORY = "mtb/conditioning"

    RETURN_TYPES = ("STRING", "STRING")
    RETURN_NAMES = ("positive", "negative")
    FUNCTION = "load_style"

    def load_style(self, style_name):
        return (self.options[style_name][0], self.options[style_name][1])


__nodes__ = [
    MTB_SmartStep,
    MTB_StylesLoader,
    MTB_InterpolateClipSequential,
    MTB_InterpolateCondition,
]