Spaces:
Runtime error
Runtime error
File size: 12,281 Bytes
4450790 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
import tempfile
from pathlib import Path
import numpy as np
import onnxruntime as ort
import torch
from PIL import Image
from ..errors import ModelNotFound
from ..log import mklog
from ..utils import (
get_model_path,
tensor2pil,
tiles_infer,
tiles_merge,
tiles_split,
)
# Disable MS telemetry
ort.disable_telemetry_events()
log = mklog(__name__)
# - COLOR to NORMALS
def color_to_normals(
color_img, overlap, progress_callback, *, save_temp=False
):
"""Compute a normal map from the given color map.
'color_img' must be a numpy array in C,H,W format (with C as RGB).
'overlap' must be one of 'SMALL', 'MEDIUM', 'LARGE'.
"""
temp_dir = Path(tempfile.mkdtemp()) if save_temp else None
# Remove alpha & convert to grayscale
img = np.mean(color_img[:3], axis=0, keepdims=True)
if temp_dir:
Image.fromarray((img[0] * 255).astype(np.uint8)).save(
temp_dir / "grayscale_img.png"
)
log.debug(
"Converting color image to grayscale by taking "
f"the mean over color channels: {img.shape}"
)
# Split image in tiles
log.debug("DeepBump Color โ Normals : tilling")
tile_size = 256
overlaps = {
"SMALL": tile_size // 6,
"MEDIUM": tile_size // 4,
"LARGE": tile_size // 2,
}
stride_size = tile_size - overlaps[overlap]
tiles, paddings = tiles_split(
img, (tile_size, tile_size), (stride_size, stride_size)
)
if temp_dir:
for i, tile in enumerate(tiles):
Image.fromarray((tile[0] * 255).astype(np.uint8)).save(
temp_dir / f"tile_{i}.png"
)
# Load model
log.debug("DeepBump Color โ Normals : loading model")
model = get_model_path("deepbump", "deepbump256.onnx")
if not model or not model.exists():
raise ModelNotFound(f"deepbump ({model})")
providers = [
"TensorrtExecutionProvider",
"CUDAExecutionProvider",
"CoreMLProvider",
"CPUExecutionProvider",
]
available_providers = [
provider
for provider in providers
if provider in ort.get_available_providers()
]
if not available_providers:
raise RuntimeError(
"No valid ONNX Runtime providers available on this machine."
)
log.debug(f"Using ONNX providers: {available_providers}")
ort_session = ort.InferenceSession(
model.as_posix(), providers=available_providers
)
# Predict normal map for each tile
log.debug("DeepBump Color โ Normals : generating")
pred_tiles = tiles_infer(
tiles, ort_session, progress_callback=progress_callback
)
if temp_dir:
for i, pred_tile in enumerate(pred_tiles):
Image.fromarray(
(pred_tile.transpose(1, 2, 0) * 255).astype(np.uint8)
).save(temp_dir / f"pred_tile_{i}.png")
# Merge tiles
log.debug("DeepBump Color โ Normals : merging")
pred_img = tiles_merge(
pred_tiles,
(stride_size, stride_size),
(3, img.shape[1], img.shape[2]),
paddings,
)
if temp_dir:
Image.fromarray(
(pred_img.transpose(1, 2, 0) * 255).astype(np.uint8)
).save(temp_dir / "merged_img.png")
# Normalize each pixel to unit vector
pred_img = normalize(pred_img)
if temp_dir:
Image.fromarray(
(pred_img.transpose(1, 2, 0) * 255).astype(np.uint8)
).save(temp_dir / "final_img.png")
log.debug(f"Debug images saved in {temp_dir}")
return pred_img
# - NORMALS to CURVATURE
def conv_1d(array, kernel_1d):
"""Perform row by row 1D convolutions.
of the given 2D image with the given 1D kernel.
"""
# Input kernel length must be odd
k_l = len(kernel_1d)
assert k_l % 2 != 0
# Convolution is repeat-padded
extended = np.pad(array, k_l // 2, mode="wrap")
# Output has same size as input (padded, valid-mode convolution)
output = np.empty(array.shape)
for i in range(array.shape[0]):
output[i] = np.convolve(
extended[i + (k_l // 2)], kernel_1d, mode="valid"
)
return output * -1
def gaussian_kernel(length, sigma):
"""Return a 1D gaussian kernel of size 'length'."""
space = np.linspace(-(length - 1) / 2, (length - 1) / 2, length)
kernel = np.exp(-0.5 * np.square(space) / np.square(sigma))
return kernel / np.sum(kernel)
def normalize(np_array):
"""Normalize all elements of the given numpy array to [0,1]."""
return (np_array - np.min(np_array)) / (
np.max(np_array) - np.min(np_array)
)
def normals_to_curvature(normals_img, blur_radius, progress_callback):
"""Compute a curvature map from the given normal map.
'normals_img' must be a numpy array in C,H,W format (with C as RGB).
'blur_radius' must be one of:
'SMALLEST', 'SMALLER', 'SMALL', 'MEDIUM', 'LARGE', 'LARGER', 'LARGEST'.
"""
# Convolutions on normal map red & green channels
if progress_callback is not None:
progress_callback(0, 4)
diff_kernel = np.array([-1, 0, 1])
h_conv = conv_1d(normals_img[0, :, :], diff_kernel)
if progress_callback is not None:
progress_callback(1, 4)
v_conv = conv_1d(-1 * normals_img[1, :, :].T, diff_kernel).T
if progress_callback is not None:
progress_callback(2, 4)
# Sum detected edges
edges_conv = h_conv + v_conv
# Blur radius size is proportional to img sizes
blur_factors = {
"SMALLEST": 1 / 256,
"SMALLER": 1 / 128,
"SMALL": 1 / 64,
"MEDIUM": 1 / 32,
"LARGE": 1 / 16,
"LARGER": 1 / 8,
"LARGEST": 1 / 4,
}
if blur_radius not in blur_factors:
raise ValueError(f"{blur_radius} not found in {blur_factors}")
blur_radius_px = int(
np.mean(normals_img.shape[1:3]) * blur_factors[blur_radius]
)
# If blur radius too small, do not blur
if blur_radius_px < 2:
edges_conv = normalize(edges_conv)
return np.stack([edges_conv, edges_conv, edges_conv])
# Make sure blur kernel length is odd
if blur_radius_px % 2 == 0:
blur_radius_px += 1
# Blur curvature with separated convolutions
sigma = blur_radius_px // 8
if sigma == 0:
sigma = 1
g_kernel = gaussian_kernel(blur_radius_px, sigma)
h_blur = conv_1d(edges_conv, g_kernel)
if progress_callback is not None:
progress_callback(3, 4)
v_blur = conv_1d(h_blur.T, g_kernel).T
if progress_callback is not None:
progress_callback(4, 4)
# Normalize to [0,1]
curvature = normalize(v_blur)
# Expand single channel the three channels (RGB)
return np.stack([curvature, curvature, curvature])
# - NORMALS to HEIGHT
def normals_to_grad(normals_img):
return (normals_img[0] - 0.5) * 2, (normals_img[1] - 0.5) * 2
def copy_flip(grad_x, grad_y):
"""Concat 4 flipped copies of input gradients (makes them wrap).
Output is twice bigger in both dimensions.
"""
grad_x_top = np.hstack([grad_x, -np.flip(grad_x, axis=1)])
grad_x_bottom = np.hstack([np.flip(grad_x, axis=0), -np.flip(grad_x)])
new_grad_x = np.vstack([grad_x_top, grad_x_bottom])
grad_y_top = np.hstack([grad_y, np.flip(grad_y, axis=1)])
grad_y_bottom = np.hstack([-np.flip(grad_y, axis=0), -np.flip(grad_y)])
new_grad_y = np.vstack([grad_y_top, grad_y_bottom])
return new_grad_x, new_grad_y
def frankot_chellappa(grad_x, grad_y, progress_callback=None):
"""Frankot-Chellappa depth-from-gradient algorithm."""
if progress_callback is not None:
progress_callback(0, 3)
rows, cols = grad_x.shape
rows_scale = (np.arange(rows) - (rows // 2 + 1)) / (rows - rows % 2)
cols_scale = (np.arange(cols) - (cols // 2 + 1)) / (cols - cols % 2)
u_grid, v_grid = np.meshgrid(cols_scale, rows_scale)
u_grid = np.fft.ifftshift(u_grid)
v_grid = np.fft.ifftshift(v_grid)
if progress_callback is not None:
progress_callback(1, 3)
grad_x_F = np.fft.fft2(grad_x)
grad_y_F = np.fft.fft2(grad_y)
if progress_callback is not None:
progress_callback(2, 3)
nominator = (-1j * u_grid * grad_x_F) + (-1j * v_grid * grad_y_F)
denominator = (u_grid**2) + (v_grid**2) + 1e-16
Z_F = nominator / denominator
Z_F[0, 0] = 0.0
Z = np.real(np.fft.ifft2(Z_F))
if progress_callback is not None:
progress_callback(3, 3)
return (Z - np.min(Z)) / (np.max(Z) - np.min(Z))
def normals_to_height(normals_img, seamless, progress_callback):
"""Computes a height map from the given normal map. 'normals_img' must be a numpy array
in C,H,W format (with C as RGB). 'seamless' is a bool that should indicates if 'normals_img'
is seamless.
"""
# Flip height axis
flip_img = np.flip(normals_img, axis=1)
# Get gradients from normal map
grad_x, grad_y = normals_to_grad(flip_img)
grad_x = np.flip(grad_x, axis=0)
grad_y = np.flip(grad_y, axis=0)
# If non-seamless chosen, expand gradients
if not seamless:
grad_x, grad_y = copy_flip(grad_x, grad_y)
# Compute height
pred_img = frankot_chellappa(
-grad_x, grad_y, progress_callback=progress_callback
)
# Cut to valid part if gradients were expanded
if not seamless:
height, width = normals_img.shape[1], normals_img.shape[2]
pred_img = pred_img[:height, :width]
# Expand single channel the three channels (RGB)
return np.stack([pred_img, pred_img, pred_img])
# - ADDON
class MTB_DeepBump:
"""Normal & height maps generation from single pictures"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"mode": (
[
"Color to Normals",
"Normals to Curvature",
"Normals to Height",
],
),
"color_to_normals_overlap": (["SMALL", "MEDIUM", "LARGE"],),
"normals_to_curvature_blur_radius": (
[
"SMALLEST",
"SMALLER",
"SMALL",
"MEDIUM",
"LARGE",
"LARGER",
"LARGEST",
],
),
"normals_to_height_seamless": ("BOOLEAN", {"default": True}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "apply"
CATEGORY = "mtb/textures"
def apply(
self,
*,
image,
mode="Color to Normals",
color_to_normals_overlap="SMALL",
normals_to_curvature_blur_radius="SMALL",
normals_to_height_seamless=True,
):
images = tensor2pil(image)
out_images = []
for image in images:
log.debug(f"Input image shape: {image}")
in_img = np.transpose(image, (2, 0, 1)) / 255
log.debug(f"transposed for deep image shape: {in_img.shape}")
out_img = None
# Apply processing
if mode == "Color to Normals":
out_img = color_to_normals(
in_img, color_to_normals_overlap, None
)
if mode == "Normals to Curvature":
out_img = normals_to_curvature(
in_img, normals_to_curvature_blur_radius, None
)
if mode == "Normals to Height":
out_img = normals_to_height(
in_img, normals_to_height_seamless, None
)
if out_img is not None:
log.debug(f"Output image shape: {out_img.shape}")
out_images.append(
torch.from_numpy(
np.transpose(out_img, (1, 2, 0)).astype(np.float32)
).unsqueeze(0)
)
else:
log.error("No out img... This should not happen")
for outi in out_images:
log.debug(f"Shape fed to utils: {outi.shape}")
return (torch.cat(out_images, dim=0),)
__nodes__ = [MTB_DeepBump]
|