Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,369 Bytes
4450790 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import torch
import numpy as np
from PIL import Image
from typing import Union, List
# Utility functions from mtb nodes: https://github.com/melMass/comfy_mtb
def pil2tensor(image: Union[Image.Image, List[Image.Image]]) -> torch.Tensor:
if isinstance(image, list):
return torch.cat([pil2tensor(img) for img in image], dim=0)
return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0)
def np2tensor(img_np: Union[np.ndarray, List[np.ndarray]]) -> torch.Tensor:
if isinstance(img_np, list):
return torch.cat([np2tensor(img) for img in img_np], dim=0)
return torch.from_numpy(img_np.astype(np.float32) / 255.0).unsqueeze(0)
def tensor2np(tensor: torch.Tensor):
if len(tensor.shape) == 3: # Single image
return np.clip(255.0 * tensor.cpu().numpy(), 0, 255).astype(np.uint8)
else: # Batch of images
return [np.clip(255.0 * t.cpu().numpy(), 0, 255).astype(np.uint8) for t in tensor]
def tensor2pil(image: torch.Tensor) -> List[Image.Image]:
batch_count = image.size(0) if len(image.shape) > 3 else 1
if batch_count > 1:
out = []
for i in range(batch_count):
out.extend(tensor2pil(image[i]))
return out
return [
Image.fromarray(
np.clip(255.0 * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8)
)
] |