Spaces:
Starting
on
L40S
Starting
on
L40S
File size: 31,203 Bytes
4450790 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 |
import contextlib
import functools
import importlib
import math
import os
import shlex
import shutil
import socket
import subprocess
import sys
import uuid
from collections.abc import Callable, Sequence
from enum import Enum
from pathlib import Path
from typing import TypeVar
import folder_paths
import numpy as np
import numpy.typing as npt
import requests
import torch
from PIL import Image
from .install import pip_map
try:
from .log import log
except ImportError:
try:
from log import log
log.warn("Imported log without relative path")
except ImportError:
import logging
log = logging.getLogger("comfy mtb utils")
log.warn("[comfy mtb] You probably called the file outside a module.")
# region SANITY_CHECK Utilities
def make_report():
pass
# endregion
# region NFOV
class numpy_NFOV:
def __init__(self, fov=None, height: int = 400, width: int = 800):
self.field_of_view = fov or [0.45, 0.45]
self.PI = np.pi
self.PI_2 = np.pi * 0.5
self.PI2 = np.pi * 2.0
self.height = height
self.width = width
self.screen_points = self._get_screen_img()
def _get_coord_rad(self, is_center_point, center_point=None):
if is_center_point:
center_point = np.array(center_point)
return (center_point * 2 - 1) * np.array([self.PI, self.PI_2])
else:
return (
(self.screen_points * 2 - 1)
* np.array([self.PI, self.PI_2])
* (np.ones(self.screen_points.shape) * self.field_of_view)
)
def _get_screen_img(self):
xx, yy = np.meshgrid(
np.linspace(0, 1, self.width), np.linspace(0, 1, self.height)
)
return np.array([xx.ravel(), yy.ravel()]).T
def _calc_spherical_to_gnomonic(self, converted_screen_coord):
x = converted_screen_coord.T[0]
y = converted_screen_coord.T[1]
rou = np.sqrt(x**2 + y**2)
c = np.arctan(rou)
sin_c = np.sin(c)
cos_c = np.cos(c)
lat = np.arcsin(
cos_c * np.sin(self.cp[1]) + (y * sin_c * np.cos(self.cp[1])) / rou
)
lon = self.cp[0] + np.arctan2(
x * sin_c,
rou * np.cos(self.cp[1]) * cos_c - y * np.sin(self.cp[1]) * sin_c,
)
lat = (lat / self.PI_2 + 1.0) * 0.5
lon = (lon / self.PI + 1.0) * 0.5
return np.array([lon, lat]).T
def _bilinear_interpolation(self, screen_coord):
uf = np.mod(screen_coord.T[0], 1) * self.frame_width # long - width
vf = np.mod(screen_coord.T[1], 1) * self.frame_height # lat - height
x0 = np.floor(uf).astype(int) # coord of pixel to bottom left
y0 = np.floor(vf).astype(int)
x2 = np.add(
x0, np.ones(uf.shape).astype(int)
) # coords of pixel to top right
y2 = np.add(y0, np.ones(vf.shape).astype(int))
base_y0 = np.multiply(y0, self.frame_width)
base_y2 = np.multiply(y2, self.frame_width)
A_idx = np.add(base_y0, x0)
B_idx = np.add(base_y2, x0)
C_idx = np.add(base_y0, x2)
D_idx = np.add(base_y2, x2)
flat_img = np.reshape(self.frame, [-1, self.frame_channel])
A = np.take(flat_img, A_idx, axis=0)
B = np.take(flat_img, B_idx, axis=0)
C = np.take(flat_img, C_idx, axis=0)
D = np.take(flat_img, D_idx, axis=0)
wa = np.multiply(x2 - uf, y2 - vf)
wb = np.multiply(x2 - uf, vf - y0)
wc = np.multiply(uf - x0, y2 - vf)
wd = np.multiply(uf - x0, vf - y0)
# interpolate
AA = np.multiply(A, np.array([wa, wa, wa]).T)
BB = np.multiply(B, np.array([wb, wb, wb]).T)
CC = np.multiply(C, np.array([wc, wc, wc]).T)
DD = np.multiply(D, np.array([wd, wd, wd]).T)
nfov = np.reshape(
np.round(AA + BB + CC + DD).astype(np.uint8),
[self.height, self.width, 3],
)
return nfov
def to_nfov(self, frame, center_point):
self.frame = frame
self.frame_height = frame.shape[0]
self.frame_width = frame.shape[1]
self.frame_channel = frame.shape[2]
self.cp = self._get_coord_rad(
center_point=center_point, is_center_point=True
)
converted_screen_coord = self._get_coord_rad(is_center_point=False)
return self._bilinear_interpolation(
self._calc_spherical_to_gnomonic(converted_screen_coord)
)
# endregion
# region SERVER Utilities
class IPChecker:
def __init__(self):
self.ips = list(self.get_local_ips())
log.debug(f"Found {len(self.ips)} local ips")
self.checked_ips: set[str] = set()
def get_working_ip(self, test_url_template: str):
for ip in self.ips:
if ip not in self.checked_ips:
self.checked_ips.add(ip)
test_url = test_url_template.format(ip)
if self._test_url(test_url):
return ip
return None
@staticmethod
def get_local_ips(prefix: str = "192.168."):
hostname = socket.gethostname()
log.debug(f"Getting local ips for {hostname}")
for info in socket.getaddrinfo(hostname, None):
# Filter out IPv6 addresses if you only want IPv4
log.debug(info)
# if info[1] == socket.SOCK_STREAM and
if info[0] == socket.AF_INET and info[4][0].startswith(prefix):
yield info[4][0]
def _test_url(self, url: str):
try:
response = requests.get(url, timeout=10)
return response.status_code == 200
except Exception:
return False
@functools.lru_cache(maxsize=1)
def get_server_info():
from comfy.cli_args import args
ip_checker = IPChecker()
base_url: str = args.listen
if base_url == "0.0.0.0":
log.debug("Server set to 0.0.0.0, we will try to resolve the host IP")
base_url = ip_checker.get_working_ip(
f"http://{{}}:{args.port}/history"
)
log.debug(f"Setting ip to {base_url}")
return (base_url, args.port)
# endregion
# region MISC Utilities
# TODO: use mtb.core directly instead of copying parts here
T = TypeVar("T", bound="StringConvertibleEnum")
class StringConvertibleEnum(Enum):
"""Base class for enums with utility methods for string conversion and member listing."""
@classmethod
def from_str(cls: type[T], label: str | T) -> T:
"""
Convert a string to the corresponding enum value (case sensitive).
Args:
label (Union[str, T]): The string or enum value to convert.
Returns
-------
T: The corresponding enum value.
Raises
------
ValueError: If the label does not correspond to any enum member.
"""
if isinstance(label, cls):
return label
if isinstance(label, str):
# from key
if label in cls.__members__:
return cls[label]
for member in cls:
if member.value == label:
return member
raise ValueError(
f"Unknown label: '{label}'. Valid members: {list(cls.__members__.keys())}, "
f"valid values: {cls.list_members()}"
)
@classmethod
def to_str(cls: type[T], enum_value: T) -> str:
"""
Convert an enum value to its string representation.
Args:
enum_value (T): The enum value to convert.
Returns
-------
str: The string representation of the enum value.
Raises
------
ValueError: If the enum value is invalid.
"""
if isinstance(enum_value, cls):
return enum_value.value
raise ValueError(f"Invalid Enum: {enum_value}")
@classmethod
def list_members(cls: type[T]) -> list[str]:
"""
Return a list of string representations of all enum members.
Returns
-------
List[str]: List of all enum member values.
"""
return [enum.value for enum in cls]
def __str__(self) -> str:
"""
Returns the string representation of the enum value.
Returns
-------
str: The string representation of the enum value.
"""
return self.value
class Precision(StringConvertibleEnum):
FULL = "full"
FP32 = "fp32"
FP16 = "fp16"
BF16 = "bf16"
FP8 = "fp8"
def to_dtype(self):
match self:
case Precision.FP32 | Precision.FULL:
return torch.float32
case Precision.FP16:
return torch.float16
case Precision.BF16:
return torch.bfloat16
case Precision.FP8:
return torch.float8_e4m3fn
class Operation(StringConvertibleEnum):
COPY = "copy"
CONVERT = "convert"
DELETE = "delete"
def backup_file(
fp: Path,
target: Path | None = None,
backup_dir: str = ".bak",
suffix: str | None = None,
prefix: str | None = None,
):
if not fp.exists():
raise FileNotFoundError(f"No file found at {fp}")
backup_directory = target or fp.parent / backup_dir
backup_directory.mkdir(parents=True, exist_ok=True)
stem = fp.stem
if suffix or prefix:
new_stem = f"{prefix or ''}{stem}{suffix or ''}"
else:
new_stem = f"{stem}_{uuid.uuid4()}"
backup_file_path = backup_directory / f"{new_stem}{fp.suffix}"
# Perform the backup
shutil.copy(fp, backup_file_path)
log.debug(f"File backed up to {backup_file_path}")
def hex_to_rgb(hex_color):
try:
hex_color = hex_color.lstrip("#")
return tuple(int(hex_color[i : i + 2], 16) for i in (0, 2, 4))
except ValueError:
log.error(f"Invalid hex color: {hex_color}")
return (0, 0, 0)
def add_path(path, prepend=False):
if isinstance(path, list):
for p in path:
add_path(p, prepend)
return
if isinstance(path, Path):
path = path.resolve().as_posix()
if path not in sys.path:
if prepend:
sys.path.insert(0, path)
else:
sys.path.append(path)
def run_command(cmd, ignored_lines_start=None):
if ignored_lines_start is None:
ignored_lines_start = []
if isinstance(cmd, str):
shell_cmd = cmd
elif isinstance(cmd, list):
shell_cmd = " ".join(
arg.as_posix() if isinstance(arg, Path) else shlex.quote(str(arg))
for arg in cmd
)
else:
raise ValueError(
"Invalid 'cmd' argument. It must be a string or a list of arguments."
)
try:
_run_command(shell_cmd, ignored_lines_start)
except subprocess.CalledProcessError as e:
print(
f"Command failed with return code: {e.returncode}", file=sys.stderr
)
print(e.stderr.strip(), file=sys.stderr)
except KeyboardInterrupt:
print("Command execution interrupted.")
def _run_command(shell_cmd, ignored_lines_start):
log.debug(f"Running {shell_cmd}")
result = subprocess.run(
shell_cmd,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
shell=True,
check=True,
)
stdout_lines = result.stdout.strip().split("\n")
stderr_lines = result.stderr.strip().split("\n")
# Print stdout, skipping ignored lines
for line in stdout_lines:
if not any(line.startswith(ign) for ign in ignored_lines_start):
print(line)
# Print stderr
for line in stderr_lines:
print(line, file=sys.stderr)
print("Command executed successfully!")
def import_install(package_name):
package_spec = reqs_map.get(package_name, package_name)
try:
importlib.import_module(package_name)
except Exception: # (ImportError, ModuleNotFoundError):
run_command(
[
Path(sys.executable).as_posix(),
"-m",
"pip",
"install",
package_spec,
]
)
importlib.import_module(package_name)
# endregion
# region GLOBAL VARIABLES
# - detect mode
comfy_mode = None
if os.environ.get("COLAB_GPU"):
comfy_mode = "colab"
elif "python_embeded" in sys.executable:
comfy_mode = "embeded"
elif ".venv" in sys.executable:
comfy_mode = "venv"
# - Get the absolute path of the parent directory of the current script
here = Path(__file__).parent.absolute()
# - Construct the absolute path to the ComfyUI directory
comfy_dir = Path(folder_paths.base_path)
models_dir = Path(folder_paths.models_dir)
output_dir = Path(folder_paths.output_directory)
input_dir = Path(folder_paths.input_directory)
styles_dir = comfy_dir / "styles"
session_id = str(uuid.uuid4())
# - Construct the path to the font file
font_path = here / "data" / "font.ttf"
# - Add extern folder to path
extern_root = here / "extern"
add_path(extern_root)
for pth in extern_root.iterdir():
if pth.is_dir():
add_path(pth)
# - Add the ComfyUI directory and custom nodes path to the sys.path list
add_path(comfy_dir)
add_path(comfy_dir / "custom_nodes")
# TODO: use the requirements library
reqs_map = {value: key for key, value in pip_map.items()}
# NOTE: store already logged warnings to only alert once.
warned_messages: set[str] = set()
PIL_FILTER_MAP = {
"nearest": Image.Resampling.NEAREST,
"box": Image.Resampling.BOX,
"bilinear": Image.Resampling.BILINEAR,
"hamming": Image.Resampling.HAMMING,
"bicubic": Image.Resampling.BICUBIC,
"lanczos": Image.Resampling.LANCZOS,
}
# endregion
# region TENSOR Utilities
def to_numpy(image: torch.Tensor) -> npt.NDArray[np.uint8]:
"""Converts a tensor to a ndarray with proper scaling and type conversion."""
log.debug(f"Converting tensor to numpy array with shape {image.shape}")
np_array = np.clip(255.0 * image.cpu().numpy(), 0, 255).astype(np.uint8)
log.debug(f"Numpy array shape after conversion: {np_array.shape}")
return np_array
def handle_batch(
tensor: torch.Tensor,
func: Callable[[torch.Tensor], Image.Image | npt.NDArray[np.uint8]],
) -> list[Image.Image] | list[npt.NDArray[np.uint8]]:
"""Handles batch processing for a given tensor and conversion function."""
return [func(tensor[i]) for i in range(tensor.shape[0])]
def tensor2pil(tensor: torch.Tensor) -> list[Image.Image]:
"""Converts a batch of tensors to a list of PIL Images."""
def single_tensor2pil(t: torch.Tensor) -> Image.Image:
np_array = to_numpy(t)
if np_array.ndim == 2: # (H, W) for masks
return Image.fromarray(np_array, mode="L")
elif np_array.ndim == 3: # (H, W, C) for RGB/RGBA
if np_array.shape[2] == 3:
return Image.fromarray(np_array, mode="RGB")
elif np_array.shape[2] == 4:
return Image.fromarray(np_array, mode="RGBA")
raise ValueError(f"Invalid tensor shape: {t.shape}")
return handle_batch(tensor, single_tensor2pil)
def pil2tensor(images: Image.Image | list[Image.Image]) -> torch.Tensor:
"""Converts a PIL Image or a list of PIL Images to a tensor."""
def single_pil2tensor(image: Image.Image) -> torch.Tensor:
np_image = np.array(image).astype(np.float32) / 255.0
if np_image.ndim == 2: # Grayscale
return torch.from_numpy(np_image).unsqueeze(0) # (1, H, W)
else: # RGB or RGBA
return torch.from_numpy(np_image).unsqueeze(0) # (1, H, W, C)
if isinstance(images, Image.Image):
return single_pil2tensor(images)
else:
return torch.cat([single_pil2tensor(img) for img in images], dim=0)
def np2tensor(
np_array: npt.NDArray[np.float32] | Sequence[npt.NDArray[np.float32]],
) -> torch.Tensor:
"""Converts a NumPy array or a list of NumPy arrays to a tensor."""
def single_np2tensor(array: npt.NDArray[np.float32]) -> torch.Tensor:
if array.ndim == 2: # (H, W) for masks
return torch.from_numpy(
array.astype(np.float32) / 255.0
).unsqueeze(0) # (1, H, W)
elif array.ndim == 3: # (H, W, C) for RGB/RGBA
return torch.from_numpy(
array.astype(np.float32) / 255.0
).unsqueeze(0) # (1, H, W, C)
raise ValueError(f"Invalid array shape: {array.shape}")
if isinstance(np_array, np.ndarray):
return single_np2tensor(np_array)
else:
return torch.cat([single_np2tensor(arr) for arr in np_array], dim=0)
def tensor2np(tensor: torch.Tensor) -> list[npt.NDArray[np.uint8]]:
"""Converts a batch of tensors to a list of NumPy arrays."""
def single_tensor2np(t: torch.Tensor) -> npt.NDArray[np.uint8]:
t = t.squeeze() # Remove any singleton dimensions
if t.ndim == 2: # (H, W) for masks
return to_numpy(t)
elif t.ndim == 3: # (C, H, W) for RGB/RGBA
if t.shape[0] in [1, 3, 4]: # Channel-first format
t = t.permute(1, 2, 0)
return to_numpy(t)
else:
raise ValueError(f"Invalid tensor shape: {t.shape}")
return handle_batch(tensor, single_tensor2np)
def pad(img, left, right, top, bottom):
pad_width = np.array(((0, 0), (top, bottom), (left, right)))
print(
f"pad_width: {pad_width}, shape: {pad_width.shape}"
) # Debugging line
return np.pad(img, pad_width, mode="wrap")
def tiles_infer(tiles, ort_session, progress_callback=None):
"""Infer each tile with the given model. progress_callback will be called with
arguments : current tile idx and total tiles amount (used to show progress on
cursor in Blender).
"""
out_channels = 3 # normal map RGB channels
tiles_nb = tiles.shape[0]
pred_tiles = np.empty(
(tiles_nb, out_channels, tiles.shape[2], tiles.shape[3])
)
for i in range(tiles_nb):
if progress_callback != None:
progress_callback(i + 1, tiles_nb)
pred_tiles[i] = ort_session.run(
None, {"input": tiles[i : i + 1].astype(np.float32)}
)[0]
return pred_tiles
def generate_mask(tile_size, stride_size):
"""Generates a pyramidal-like mask. Used for mixing overlapping predicted tiles."""
tile_h, tile_w = tile_size
stride_h, stride_w = stride_size
ramp_h = tile_h - stride_h
ramp_w = tile_w - stride_w
mask = np.ones((tile_h, tile_w))
# ramps in width direction
mask[ramp_h:-ramp_h, :ramp_w] = np.linspace(0, 1, num=ramp_w)
mask[ramp_h:-ramp_h, -ramp_w:] = np.linspace(1, 0, num=ramp_w)
# ramps in height direction
mask[:ramp_h, ramp_w:-ramp_w] = np.transpose(
np.linspace(0, 1, num=ramp_h)[None], (1, 0)
)
mask[-ramp_h:, ramp_w:-ramp_w] = np.transpose(
np.linspace(1, 0, num=ramp_h)[None], (1, 0)
)
# Assume tiles are squared
assert ramp_h == ramp_w
# top left corner
corner = np.rot90(corner_mask(ramp_h), 2)
mask[:ramp_h, :ramp_w] = corner
# top right corner
corner = np.flip(corner, 1)
mask[:ramp_h, -ramp_w:] = corner
# bottom right corner
corner = np.flip(corner, 0)
mask[-ramp_h:, -ramp_w:] = corner
# bottom right corner
corner = np.flip(corner, 1)
mask[-ramp_h:, :ramp_w] = corner
return mask
def corner_mask(side_length):
"""Generates the corner part of the pyramidal-like mask.
Currently, only for square shapes.
"""
corner = np.zeros([side_length, side_length])
for h in range(0, side_length):
for w in range(0, side_length):
if h >= w:
sh = h / (side_length - 1)
corner[h, w] = 1 - sh
if h <= w:
sw = w / (side_length - 1)
corner[h, w] = 1 - sw
return corner - 0.25 * scaling_mask(side_length)
def scaling_mask(side_length):
scaling = np.zeros([side_length, side_length])
for h in range(0, side_length):
for w in range(0, side_length):
sh = h / (side_length - 1)
sw = w / (side_length - 1)
if h >= w and h <= side_length - w:
scaling[h, w] = sw
if h <= w and h <= side_length - w:
scaling[h, w] = sh
if h >= w and h >= side_length - w:
scaling[h, w] = 1 - sh
if h <= w and h >= side_length - w:
scaling[h, w] = 1 - sw
return 2 * scaling
def tiles_merge(tiles, stride_size, img_size, paddings):
"""Merges the list of tiles into one image. img_size is the original size, before
padding.
"""
_, tile_h, tile_w = tiles[0].shape
pad_left, pad_right, pad_top, pad_bottom = paddings
height = img_size[1] + pad_top + pad_bottom
width = img_size[2] + pad_left + pad_right
stride_h, stride_w = stride_size
# stride must be even
assert (stride_h % 2 == 0) and (stride_w % 2 == 0)
# stride must be greater or equal than half tile
assert (stride_h >= tile_h / 2) and (stride_w >= tile_w / 2)
# stride must be smaller or equal tile size
assert (stride_h <= tile_h) and (stride_w <= tile_w)
merged = np.zeros((img_size[0], height, width))
mask = generate_mask((tile_h, tile_w), stride_size)
h_range = ((height - tile_h) // stride_h) + 1
w_range = ((width - tile_w) // stride_w) + 1
idx = 0
for h in range(0, h_range):
for w in range(0, w_range):
h_from, h_to = h * stride_h, h * stride_h + tile_h
w_from, w_to = w * stride_w, w * stride_w + tile_w
merged[:, h_from:h_to, w_from:w_to] += tiles[idx] * mask
idx += 1
return merged[:, pad_top:-pad_bottom, pad_left:-pad_right]
def tiles_split(img, tile_size, stride_size):
"""Returns list of tiles from the given image and the padding used to fit the tiles
in it. Input image must have dimension C,H,W.
"""
log.debug(f"Splitting img: tile {tile_size}, stride {stride_size} ")
tile_h, tile_w = tile_size
stride_h, stride_w = stride_size
img_h, img_w = img.shape[0], img.shape[1]
# stride must be even
assert (stride_h % 2 == 0) and (stride_w % 2 == 0)
# stride must be greater or equal than half tile
assert (stride_h >= tile_h / 2) and (stride_w >= tile_w / 2)
# stride must be smaller or equal tile size
assert (stride_h <= tile_h) and (stride_w <= tile_w)
# find total height & width padding sizes
pad_h, pad_w = 0, 0
remainer_h = (img_h - tile_h) % stride_h
remainer_w = (img_w - tile_w) % stride_w
if remainer_h != 0:
pad_h = stride_h - remainer_h
if remainer_w != 0:
pad_w = stride_w - remainer_w
# if tile bigger than image, pad image to tile size
if tile_h > img_h:
pad_h = tile_h - img_h
if tile_w > img_w:
pad_w = tile_w - img_w
# pad image, add extra stride to padding to avoid pyramid
# weighting leaking onto the valid part of the picture
pad_left = pad_w // 2 + stride_w
pad_right = pad_left if pad_w % 2 == 0 else pad_left + 1
pad_top = pad_h // 2 + stride_h
pad_bottom = pad_top if pad_h % 2 == 0 else pad_top + 1
img = pad(img, pad_left, pad_right, pad_top, pad_bottom)
img_h, img_w = img.shape[1], img.shape[2]
# extract tiles
h_range = ((img_h - tile_h) // stride_h) + 1
w_range = ((img_w - tile_w) // stride_w) + 1
tiles = np.empty([h_range * w_range, img.shape[0], tile_h, tile_w])
idx = 0
for h in range(0, h_range):
for w in range(0, w_range):
h_from, h_to = h * stride_h, h * stride_h + tile_h
w_from, w_to = w * stride_w, w * stride_w + tile_w
tiles[idx] = img[:, h_from:h_to, w_from:w_to]
idx += 1
return tiles, (pad_left, pad_right, pad_top, pad_bottom)
# endregion
# region MODEL Utilities
def download_antelopev2():
antelopev2_url = (
"https://drive.google.com/uc?id=18wEUfMNohBJ4K3Ly5wpTejPfDzp-8fI8"
)
try:
import gdown
log.debug("Loading antelopev2 model")
dest = get_model_path("insightface")
archive = dest / "antelopev2.zip"
final_path = dest / "models" / "antelopev2"
if not final_path.exists():
log.info(f"antelopev2 not found, downloading to {dest}")
gdown.download(
antelopev2_url,
archive.as_posix(),
resume=True,
)
log.info(f"Unzipping antelopev2 to {final_path}")
if archive.exists():
# we unzip it
import zipfile
with zipfile.ZipFile(archive.as_posix(), "r") as zip_ref:
zip_ref.extractall(final_path.parent.as_posix())
except Exception as e:
log.error(
f"Could not load or download antelopev2 model, download it manually from {antelopev2_url}"
)
raise e
def get_model_path(fam, model=None):
log.debug(f"Requesting {fam} with model {model}")
res = None
if model:
res = folder_paths.get_full_path(fam, model)
else:
# this one can raise errors...
with contextlib.suppress(KeyError):
res = folder_paths.get_folder_paths(fam)
if res:
if isinstance(res, list):
if len(res) > 1:
warn_msg = f"Found multiple match, we will pick the last {res[-1]}\n{res}"
if warn_msg not in warned_messages:
log.info(warn_msg)
warned_messages.add(warn_msg)
res = res[-1]
res = Path(res)
log.debug(f"Resolved model path from folder_paths: {res}")
else:
res = models_dir / fam
if model:
res /= model
return res
# endregion
# region UV Utilities
def create_uv_map_tensor(width=512, height=512):
u = torch.linspace(0.0, 1.0, steps=width)
v = torch.linspace(0.0, 1.0, steps=height)
U, V = torch.meshgrid(u, v)
uv_map = torch.zeros(height, width, 3, dtype=torch.float32)
uv_map[:, :, 0] = U.t()
uv_map[:, :, 1] = V.t()
return uv_map.unsqueeze(0)
# endregion
# region ANIMATION Utilities
EASINGS = [
"Linear",
"Sine In",
"Sine Out",
"Sine In/Out",
"Quart In",
"Quart Out",
"Quart In/Out",
"Cubic In",
"Cubic Out",
"Cubic In/Out",
"Circ In",
"Circ Out",
"Circ In/Out",
"Back In",
"Back Out",
"Back In/Out",
"Elastic In",
"Elastic Out",
"Elastic In/Out",
"Bounce In",
"Bounce Out",
"Bounce In/Out",
]
def apply_easing(value, easing_type):
if easing_type == "Linear":
return value
# Back easing functions
def easeInBack(t):
s = 1.70158
return t * t * ((s + 1) * t - s)
def easeOutBack(t):
s = 1.70158
return ((t - 1) * t * ((s + 1) * t + s)) + 1
def easeInOutBack(t):
s = 1.70158 * 1.525
if t < 0.5:
return (t * t * (t * (s + 1) - s)) * 2
return ((t - 2) * t * ((s + 1) * t + s) + 2) * 2
# Elastic easing functions
def easeInElastic(t):
if t == 0:
return 0
if t == 1:
return 1
p = 0.3
s = p / 4
return -(
math.pow(2, 10 * (t - 1))
* math.sin((t - 1 - s) * (2 * math.pi) / p)
)
def easeOutElastic(t):
if t == 0:
return 0
if t == 1:
return 1
p = 0.3
s = p / 4
return math.pow(2, -10 * t) * math.sin((t - s) * (2 * math.pi) / p) + 1
def easeInOutElastic(t):
if t == 0:
return 0
if t == 1:
return 1
p = 0.3 * 1.5
s = p / 4
t = t * 2
if t < 1:
return -0.5 * (
math.pow(2, 10 * (t - 1))
* math.sin((t - 1 - s) * (2 * math.pi) / p)
)
return (
0.5
* math.pow(2, -10 * (t - 1))
* math.sin((t - 1 - s) * (2 * math.pi) / p)
+ 1
)
# Bounce easing functions
def easeInBounce(t):
return 1 - easeOutBounce(1 - t)
def easeOutBounce(t):
if t < (1 / 2.75):
return 7.5625 * t * t
elif t < (2 / 2.75):
t -= 1.5 / 2.75
return 7.5625 * t * t + 0.75
elif t < (2.5 / 2.75):
t -= 2.25 / 2.75
return 7.5625 * t * t + 0.9375
else:
t -= 2.625 / 2.75
return 7.5625 * t * t + 0.984375
def easeInOutBounce(t):
if t < 0.5:
return easeInBounce(t * 2) * 0.5
return easeOutBounce(t * 2 - 1) * 0.5 + 0.5
# Quart easing functions
def easeInQuart(t):
return t * t * t * t
def easeOutQuart(t):
t -= 1
return -(t**2 * t * t - 1)
def easeInOutQuart(t):
t *= 2
if t < 1:
return 0.5 * t * t * t * t
t -= 2
return -0.5 * (t**2 * t * t - 2)
# Cubic easing functions
def easeInCubic(t):
return t * t * t
def easeOutCubic(t):
t -= 1
return t**2 * t + 1
def easeInOutCubic(t):
t *= 2
if t < 1:
return 0.5 * t * t * t
t -= 2
return 0.5 * (t**2 * t + 2)
# Circ easing functions
def easeInCirc(t):
return -(math.sqrt(1 - t * t) - 1)
def easeOutCirc(t):
t -= 1
return math.sqrt(1 - t**2)
def easeInOutCirc(t):
t *= 2
if t < 1:
return -0.5 * (math.sqrt(1 - t**2) - 1)
t -= 2
return 0.5 * (math.sqrt(1 - t**2) + 1)
# Sine easing functions
def easeInSine(t):
return -math.cos(t * (math.pi / 2)) + 1
def easeOutSine(t):
return math.sin(t * (math.pi / 2))
def easeInOutSine(t):
return -0.5 * (math.cos(math.pi * t) - 1)
easing_functions = {
"Sine In": easeInSine,
"Sine Out": easeOutSine,
"Sine In/Out": easeInOutSine,
"Quart In": easeInQuart,
"Quart Out": easeOutQuart,
"Quart In/Out": easeInOutQuart,
"Cubic In": easeInCubic,
"Cubic Out": easeOutCubic,
"Cubic In/Out": easeInOutCubic,
"Circ In": easeInCirc,
"Circ Out": easeOutCirc,
"Circ In/Out": easeInOutCirc,
"Back In": easeInBack,
"Back Out": easeOutBack,
"Back In/Out": easeInOutBack,
"Elastic In": easeInElastic,
"Elastic Out": easeOutElastic,
"Elastic In/Out": easeInOutElastic,
"Bounce In": easeInBounce,
"Bounce Out": easeOutBounce,
"Bounce In/Out": easeInOutBounce,
}
function_ease = easing_functions.get(easing_type)
if function_ease:
return function_ease(value)
log.error(f"Unknown easing type: {easing_type}")
log.error(f"Available easing types: {list(easing_functions.keys())}")
raise ValueError(f"Unknown easing type: {easing_type}")
# endregion
|