Spaces:
Sleeping
Sleeping
File size: 12,392 Bytes
4450790 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
from nodes import MAX_RESOLUTION, ConditioningZeroOut, ConditioningSetTimestepRange, ConditioningCombine
import re
class CLIPTextEncodeSDXLSimplified:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"width": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}),
"height": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}),
"size_cond_factor": ("INT", {"default": 4, "min": 1, "max": 16 }),
"text": ("STRING", {"multiline": True, "dynamicPrompts": True, "default": ""}),
"clip": ("CLIP", ),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "execute"
CATEGORY = "essentials/conditioning"
def execute(self, clip, width, height, size_cond_factor, text):
crop_w = 0
crop_h = 0
width = width*size_cond_factor
height = height*size_cond_factor
target_width = width
target_height = height
text_g = text_l = text
tokens = clip.tokenize(text_g)
tokens["l"] = clip.tokenize(text_l)["l"]
if len(tokens["l"]) != len(tokens["g"]):
empty = clip.tokenize("")
while len(tokens["l"]) < len(tokens["g"]):
tokens["l"] += empty["l"]
while len(tokens["l"]) > len(tokens["g"]):
tokens["g"] += empty["g"]
cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
return ([[cond, {"pooled_output": pooled, "width": width, "height": height, "crop_w": crop_w, "crop_h": crop_h, "target_width": target_width, "target_height": target_height}]], )
class ConditioningCombineMultiple:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"conditioning_1": ("CONDITIONING",),
"conditioning_2": ("CONDITIONING",),
}, "optional": {
"conditioning_3": ("CONDITIONING",),
"conditioning_4": ("CONDITIONING",),
"conditioning_5": ("CONDITIONING",),
},
}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "execute"
CATEGORY = "essentials/conditioning"
def execute(self, conditioning_1, conditioning_2, conditioning_3=None, conditioning_4=None, conditioning_5=None):
c = conditioning_1 + conditioning_2
if conditioning_3 is not None:
c += conditioning_3
if conditioning_4 is not None:
c += conditioning_4
if conditioning_5 is not None:
c += conditioning_5
return (c,)
class SD3NegativeConditioning:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"conditioning": ("CONDITIONING",),
"end": ("FLOAT", {"default": 0.1, "min": 0.0, "max": 1.0, "step": 0.001 }),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "execute"
CATEGORY = "essentials/conditioning"
def execute(self, conditioning, end):
zero_c = ConditioningZeroOut().zero_out(conditioning)[0]
if end == 0:
return (zero_c, )
c = ConditioningSetTimestepRange().set_range(conditioning, 0, end)[0]
zero_c = ConditioningSetTimestepRange().set_range(zero_c, end, 1.0)[0]
c = ConditioningCombine().combine(zero_c, c)[0]
return (c, )
class FluxAttentionSeeker:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"clip": ("CLIP",),
"apply_to_query": ("BOOLEAN", { "default": True }),
"apply_to_key": ("BOOLEAN", { "default": True }),
"apply_to_value": ("BOOLEAN", { "default": True }),
"apply_to_out": ("BOOLEAN", { "default": True }),
**{f"clip_l_{s}": ("FLOAT", { "display": "slider", "default": 1.0, "min": 0, "max": 5, "step": 0.05 }) for s in range(12)},
**{f"t5xxl_{s}": ("FLOAT", { "display": "slider", "default": 1.0, "min": 0, "max": 5, "step": 0.05 }) for s in range(24)},
}}
RETURN_TYPES = ("CLIP",)
FUNCTION = "execute"
CATEGORY = "essentials/conditioning"
def execute(self, clip, apply_to_query, apply_to_key, apply_to_value, apply_to_out, **values):
if not apply_to_key and not apply_to_query and not apply_to_value and not apply_to_out:
return (clip, )
m = clip.clone()
sd = m.patcher.model_state_dict()
for k in sd:
if "self_attn" in k:
layer = re.search(r"\.layers\.(\d+)\.", k)
layer = int(layer.group(1)) if layer else None
if layer is not None and values[f"clip_l_{layer}"] != 1.0:
if (apply_to_query and "q_proj" in k) or (apply_to_key and "k_proj" in k) or (apply_to_value and "v_proj" in k) or (apply_to_out and "out_proj" in k):
m.add_patches({k: (None,)}, 0.0, values[f"clip_l_{layer}"])
elif "SelfAttention" in k:
block = re.search(r"\.block\.(\d+)\.", k)
block = int(block.group(1)) if block else None
if block is not None and values[f"t5xxl_{block}"] != 1.0:
if (apply_to_query and ".q." in k) or (apply_to_key and ".k." in k) or (apply_to_value and ".v." in k) or (apply_to_out and ".o." in k):
m.add_patches({k: (None,)}, 0.0, values[f"t5xxl_{block}"])
return (m, )
class SD3AttentionSeekerLG:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"clip": ("CLIP",),
"apply_to_query": ("BOOLEAN", { "default": True }),
"apply_to_key": ("BOOLEAN", { "default": True }),
"apply_to_value": ("BOOLEAN", { "default": True }),
"apply_to_out": ("BOOLEAN", { "default": True }),
**{f"clip_l_{s}": ("FLOAT", { "display": "slider", "default": 1.0, "min": 0, "max": 5, "step": 0.05 }) for s in range(12)},
**{f"clip_g_{s}": ("FLOAT", { "display": "slider", "default": 1.0, "min": 0, "max": 5, "step": 0.05 }) for s in range(32)},
}}
RETURN_TYPES = ("CLIP",)
FUNCTION = "execute"
CATEGORY = "essentials/conditioning"
def execute(self, clip, apply_to_query, apply_to_key, apply_to_value, apply_to_out, **values):
if not apply_to_key and not apply_to_query and not apply_to_value and not apply_to_out:
return (clip, )
m = clip.clone()
sd = m.patcher.model_state_dict()
for k in sd:
if "self_attn" in k:
layer = re.search(r"\.layers\.(\d+)\.", k)
layer = int(layer.group(1)) if layer else None
if layer is not None:
if "clip_l" in k and values[f"clip_l_{layer}"] != 1.0:
if (apply_to_query and "q_proj" in k) or (apply_to_key and "k_proj" in k) or (apply_to_value and "v_proj" in k) or (apply_to_out and "out_proj" in k):
m.add_patches({k: (None,)}, 0.0, values[f"clip_l_{layer}"])
elif "clip_g" in k and values[f"clip_g_{layer}"] != 1.0:
if (apply_to_query and "q_proj" in k) or (apply_to_key and "k_proj" in k) or (apply_to_value and "v_proj" in k) or (apply_to_out and "out_proj" in k):
m.add_patches({k: (None,)}, 0.0, values[f"clip_g_{layer}"])
return (m, )
class SD3AttentionSeekerT5:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"clip": ("CLIP",),
"apply_to_query": ("BOOLEAN", { "default": True }),
"apply_to_key": ("BOOLEAN", { "default": True }),
"apply_to_value": ("BOOLEAN", { "default": True }),
"apply_to_out": ("BOOLEAN", { "default": True }),
**{f"t5xxl_{s}": ("FLOAT", { "display": "slider", "default": 1.0, "min": 0, "max": 5, "step": 0.05 }) for s in range(24)},
}}
RETURN_TYPES = ("CLIP",)
FUNCTION = "execute"
CATEGORY = "essentials/conditioning"
def execute(self, clip, apply_to_query, apply_to_key, apply_to_value, apply_to_out, **values):
if not apply_to_key and not apply_to_query and not apply_to_value and not apply_to_out:
return (clip, )
m = clip.clone()
sd = m.patcher.model_state_dict()
for k in sd:
if "SelfAttention" in k:
block = re.search(r"\.block\.(\d+)\.", k)
block = int(block.group(1)) if block else None
if block is not None and values[f"t5xxl_{block}"] != 1.0:
if (apply_to_query and ".q." in k) or (apply_to_key and ".k." in k) or (apply_to_value and ".v." in k) or (apply_to_out and ".o." in k):
m.add_patches({k: (None,)}, 0.0, values[f"t5xxl_{block}"])
return (m, )
class FluxBlocksBuster:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"blocks": ("STRING", {"default": "## 0 = 1.0\n## 1 = 1.0\n## 2 = 1.0\n## 3 = 1.0\n## 4 = 1.0\n## 5 = 1.0\n## 6 = 1.0\n## 7 = 1.0\n## 8 = 1.0\n## 9 = 1.0\n## 10 = 1.0\n## 11 = 1.0\n## 12 = 1.0\n## 13 = 1.0\n## 14 = 1.0\n## 15 = 1.0\n## 16 = 1.0\n## 17 = 1.0\n## 18 = 1.0\n# 0 = 1.0\n# 1 = 1.0\n# 2 = 1.0\n# 3 = 1.0\n# 4 = 1.0\n# 5 = 1.0\n# 6 = 1.0\n# 7 = 1.0\n# 8 = 1.0\n# 9 = 1.0\n# 10 = 1.0\n# 11 = 1.0\n# 12 = 1.0\n# 13 = 1.0\n# 14 = 1.0\n# 15 = 1.0\n# 16 = 1.0\n# 17 = 1.0\n# 18 = 1.0\n# 19 = 1.0\n# 20 = 1.0\n# 21 = 1.0\n# 22 = 1.0\n# 23 = 1.0\n# 24 = 1.0\n# 25 = 1.0\n# 26 = 1.0\n# 27 = 1.0\n# 28 = 1.0\n# 29 = 1.0\n# 30 = 1.0\n# 31 = 1.0\n# 32 = 1.0\n# 33 = 1.0\n# 34 = 1.0\n# 35 = 1.0\n# 36 = 1.0\n# 37 = 1.0", "multiline": True, "dynamicPrompts": True}),
#**{f"double_block_{s}": ("FLOAT", { "display": "slider", "default": 1.0, "min": 0, "max": 5, "step": 0.05 }) for s in range(19)},
#**{f"single_block_{s}": ("FLOAT", { "display": "slider", "default": 1.0, "min": 0, "max": 5, "step": 0.05 }) for s in range(38)},
}}
RETURN_TYPES = ("MODEL", "STRING")
RETURN_NAMES = ("MODEL", "patched_blocks")
FUNCTION = "patch"
CATEGORY = "essentials/conditioning"
def patch(self, model, blocks):
if blocks == "":
return (model, )
m = model.clone()
sd = model.model_state_dict()
patched_blocks = []
"""
Also compatible with the following format:
double_blocks\.0\.(img|txt)_(mod|attn|mlp)\.(lin|qkv|proj|0|2)\.(weight|bias)=1.1
single_blocks\.0\.(linear[12]|modulation\.lin)\.(weight|bias)=1.1
The regex is used to match the block names
"""
blocks = blocks.split("\n")
blocks = [b.strip() for b in blocks if b.strip()]
for k in sd:
for block in blocks:
block = block.split("=")
value = float(block[1].strip()) if len(block) > 1 else 1.0
block = block[0].strip()
if block.startswith("##"):
block = r"double_blocks\." + block[2:].strip() + r"\.(img|txt)_(mod|attn|mlp)\.(lin|qkv|proj|0|2)\.(weight|bias)"
elif block.startswith("#"):
block = r"single_blocks\." + block[1:].strip() + r"\.(linear[12]|modulation\.lin)\.(weight|bias)"
if value != 1.0 and re.search(block, k):
m.add_patches({k: (None,)}, 0.0, value)
patched_blocks.append(f"{k}: {value}")
patched_blocks = "\n".join(patched_blocks)
return (m, patched_blocks,)
COND_CLASS_MAPPINGS = {
"CLIPTextEncodeSDXL+": CLIPTextEncodeSDXLSimplified,
"ConditioningCombineMultiple+": ConditioningCombineMultiple,
"SD3NegativeConditioning+": SD3NegativeConditioning,
"FluxAttentionSeeker+": FluxAttentionSeeker,
"SD3AttentionSeekerLG+": SD3AttentionSeekerLG,
"SD3AttentionSeekerT5+": SD3AttentionSeekerT5,
"FluxBlocksBuster+": FluxBlocksBuster,
}
COND_NAME_MAPPINGS = {
"CLIPTextEncodeSDXL+": "🔧 SDXL CLIPTextEncode",
"ConditioningCombineMultiple+": "🔧 Cond Combine Multiple",
"SD3NegativeConditioning+": "🔧 SD3 Negative Conditioning",
"FluxAttentionSeeker+": "🔧 Flux Attention Seeker",
"SD3AttentionSeekerLG+": "🔧 SD3 Attention Seeker L/G",
"SD3AttentionSeekerT5+": "🔧 SD3 Attention Seeker T5",
"FluxBlocksBuster+": "🔧 Flux Model Blocks Buster",
} |