Spaces:
Sleeping
Sleeping
File size: 2,561 Bytes
4450790 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
import torch
from typing import Dict, Optional
import comfy.ldm.modules.diffusionmodules.mmdit
class ControlNet(comfy.ldm.modules.diffusionmodules.mmdit.MMDiT):
def __init__(
self,
num_blocks = None,
control_latent_channels = None,
dtype = None,
device = None,
operations = None,
**kwargs,
):
super().__init__(dtype=dtype, device=device, operations=operations, final_layer=False, num_blocks=num_blocks, **kwargs)
# controlnet_blocks
self.controlnet_blocks = torch.nn.ModuleList([])
for _ in range(len(self.joint_blocks)):
self.controlnet_blocks.append(operations.Linear(self.hidden_size, self.hidden_size, device=device, dtype=dtype))
if control_latent_channels is None:
control_latent_channels = self.in_channels
self.pos_embed_input = comfy.ldm.modules.diffusionmodules.mmdit.PatchEmbed(
None,
self.patch_size,
control_latent_channels,
self.hidden_size,
bias=True,
strict_img_size=False,
dtype=dtype,
device=device,
operations=operations
)
def forward(
self,
x: torch.Tensor,
timesteps: torch.Tensor,
y: Optional[torch.Tensor] = None,
context: Optional[torch.Tensor] = None,
hint = None,
) -> torch.Tensor:
#weird sd3 controlnet specific stuff
y = torch.zeros_like(y)
if self.context_processor is not None:
context = self.context_processor(context)
hw = x.shape[-2:]
x = self.x_embedder(x) + self.cropped_pos_embed(hw, device=x.device).to(dtype=x.dtype, device=x.device)
x += self.pos_embed_input(hint)
c = self.t_embedder(timesteps, dtype=x.dtype)
if y is not None and self.y_embedder is not None:
y = self.y_embedder(y)
c = c + y
if context is not None:
context = self.context_embedder(context)
output = []
blocks = len(self.joint_blocks)
for i in range(blocks):
context, x = self.joint_blocks[i](
context,
x,
c=c,
use_checkpoint=self.use_checkpoint,
)
out = self.controlnet_blocks[i](x)
count = self.depth // blocks
if i == blocks - 1:
count -= 1
for j in range(count):
output.append(out)
return {"output": output}
|