File size: 31,586 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
from ..utility.utility import tensor2pil, pil2tensor
from PIL import Image, ImageDraw, ImageFilter
import numpy as np
import torch
from torchvision.transforms import Resize, CenterCrop, InterpolationMode
import math

#based on nodes from mtb https://github.com/melMass/comfy_mtb

def bbox_to_region(bbox, target_size=None):
    bbox = bbox_check(bbox, target_size)
    return (bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3])

def bbox_check(bbox, target_size=None):
    if not target_size:
        return bbox

    new_bbox = (
        bbox[0],
        bbox[1],
        min(target_size[0] - bbox[0], bbox[2]),
        min(target_size[1] - bbox[1], bbox[3]),
    )
    return new_bbox

class BatchCropFromMask:

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "original_images": ("IMAGE",),
                "masks": ("MASK",),
                "crop_size_mult": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}),
                "bbox_smooth_alpha": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
            },
        }

    RETURN_TYPES = (
        "IMAGE",
        "IMAGE",
        "BBOX",
        "INT",
        "INT",
    )
    RETURN_NAMES = (
        "original_images",
        "cropped_images",
        "bboxes",
        "width",
        "height",
    )
    FUNCTION = "crop"
    CATEGORY = "KJNodes/masking"

    def smooth_bbox_size(self, prev_bbox_size, curr_bbox_size, alpha):
        if alpha == 0:
            return prev_bbox_size
        return round(alpha * curr_bbox_size + (1 - alpha) * prev_bbox_size)

    def smooth_center(self, prev_center, curr_center, alpha=0.5):
        if alpha == 0:
            return prev_center
        return (
            round(alpha * curr_center[0] + (1 - alpha) * prev_center[0]),
            round(alpha * curr_center[1] + (1 - alpha) * prev_center[1])
        )

    def crop(self, masks, original_images, crop_size_mult, bbox_smooth_alpha):
 
        bounding_boxes = []
        cropped_images = []

        self.max_bbox_width = 0
        self.max_bbox_height = 0

        # First, calculate the maximum bounding box size across all masks
        curr_max_bbox_width = 0
        curr_max_bbox_height = 0
        for mask in masks:
            _mask = tensor2pil(mask)[0]
            non_zero_indices = np.nonzero(np.array(_mask))
            min_x, max_x = np.min(non_zero_indices[1]), np.max(non_zero_indices[1])
            min_y, max_y = np.min(non_zero_indices[0]), np.max(non_zero_indices[0])
            width = max_x - min_x
            height = max_y - min_y
            curr_max_bbox_width = max(curr_max_bbox_width, width)
            curr_max_bbox_height = max(curr_max_bbox_height, height)

        # Smooth the changes in the bounding box size
        self.max_bbox_width = self.smooth_bbox_size(self.max_bbox_width, curr_max_bbox_width, bbox_smooth_alpha)
        self.max_bbox_height = self.smooth_bbox_size(self.max_bbox_height, curr_max_bbox_height, bbox_smooth_alpha)

        # Apply the crop size multiplier
        self.max_bbox_width = round(self.max_bbox_width * crop_size_mult)
        self.max_bbox_height = round(self.max_bbox_height * crop_size_mult)
        bbox_aspect_ratio = self.max_bbox_width / self.max_bbox_height

        # Then, for each mask and corresponding image...
        for i, (mask, img) in enumerate(zip(masks, original_images)):
            _mask = tensor2pil(mask)[0]
            non_zero_indices = np.nonzero(np.array(_mask))
            min_x, max_x = np.min(non_zero_indices[1]), np.max(non_zero_indices[1])
            min_y, max_y = np.min(non_zero_indices[0]), np.max(non_zero_indices[0])
            
            # Calculate center of bounding box
            center_x = np.mean(non_zero_indices[1])
            center_y = np.mean(non_zero_indices[0])
            curr_center = (round(center_x), round(center_y))

            # If this is the first frame, initialize prev_center with curr_center
            if not hasattr(self, 'prev_center'):
                self.prev_center = curr_center

            # Smooth the changes in the center coordinates from the second frame onwards
            if i > 0:
                center = self.smooth_center(self.prev_center, curr_center, bbox_smooth_alpha)
            else:
                center = curr_center

            # Update prev_center for the next frame
            self.prev_center = center

            # Create bounding box using max_bbox_width and max_bbox_height
            half_box_width = round(self.max_bbox_width / 2)
            half_box_height = round(self.max_bbox_height / 2)
            min_x = max(0, center[0] - half_box_width)
            max_x = min(img.shape[1], center[0] + half_box_width)
            min_y = max(0, center[1] - half_box_height)
            max_y = min(img.shape[0], center[1] + half_box_height)

            # Append bounding box coordinates
            bounding_boxes.append((min_x, min_y, max_x - min_x, max_y - min_y))

            # Crop the image from the bounding box
            cropped_img = img[min_y:max_y, min_x:max_x, :]
            
            # Calculate the new dimensions while maintaining the aspect ratio
            new_height = min(cropped_img.shape[0], self.max_bbox_height)
            new_width = round(new_height * bbox_aspect_ratio)

            # Resize the image
            resize_transform = Resize((new_height, new_width))
            resized_img = resize_transform(cropped_img.permute(2, 0, 1))

            # Perform the center crop to the desired size
            crop_transform = CenterCrop((self.max_bbox_height, self.max_bbox_width)) # swap the order here if necessary
            cropped_resized_img = crop_transform(resized_img)

            cropped_images.append(cropped_resized_img.permute(1, 2, 0))

        cropped_out = torch.stack(cropped_images, dim=0)
        
        return (original_images, cropped_out, bounding_boxes, self.max_bbox_width, self.max_bbox_height, )

class BatchUncrop:

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "original_images": ("IMAGE",),
                "cropped_images": ("IMAGE",),
                "bboxes": ("BBOX",),
                "border_blending": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 1.0, "step": 0.01}, ),
                "crop_rescale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                "border_top": ("BOOLEAN", {"default": True}),
                "border_bottom": ("BOOLEAN", {"default": True}),
                "border_left": ("BOOLEAN", {"default": True}),
                "border_right": ("BOOLEAN", {"default": True}),
            }
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "uncrop"

    CATEGORY = "KJNodes/masking"

    def uncrop(self, original_images, cropped_images, bboxes, border_blending, crop_rescale, border_top, border_bottom, border_left, border_right):
        def inset_border(image, border_width, border_color, border_top, border_bottom, border_left, border_right):
            draw = ImageDraw.Draw(image)
            width, height = image.size
            if border_top:
                draw.rectangle((0, 0, width, border_width), fill=border_color)
            if border_bottom:
                draw.rectangle((0, height - border_width, width, height), fill=border_color)
            if border_left:
                draw.rectangle((0, 0, border_width, height), fill=border_color)
            if border_right:
                draw.rectangle((width - border_width, 0, width, height), fill=border_color)
            return image

        if len(original_images) != len(cropped_images):
            raise ValueError(f"The number of original_images ({len(original_images)}) and cropped_images ({len(cropped_images)}) should be the same")

        # Ensure there are enough bboxes, but drop the excess if there are more bboxes than images
        if len(bboxes) > len(original_images):
            print(f"Warning: Dropping excess bounding boxes. Expected {len(original_images)}, but got {len(bboxes)}")
            bboxes = bboxes[:len(original_images)]
        elif len(bboxes) < len(original_images):
            raise ValueError("There should be at least as many bboxes as there are original and cropped images")

        input_images = tensor2pil(original_images)
        crop_imgs = tensor2pil(cropped_images)
        
        out_images = []
        for i in range(len(input_images)):
            img = input_images[i]
            crop = crop_imgs[i]
            bbox = bboxes[i]
            
            # uncrop the image based on the bounding box
            bb_x, bb_y, bb_width, bb_height = bbox

            paste_region = bbox_to_region((bb_x, bb_y, bb_width, bb_height), img.size)
            
            # scale factors
            scale_x = crop_rescale
            scale_y = crop_rescale

            # scaled paste_region
            paste_region = (round(paste_region[0]*scale_x), round(paste_region[1]*scale_y), round(paste_region[2]*scale_x), round(paste_region[3]*scale_y))

            # rescale the crop image to fit the paste_region
            crop = crop.resize((round(paste_region[2]-paste_region[0]), round(paste_region[3]-paste_region[1])))
            crop_img = crop.convert("RGB")
   
            if border_blending > 1.0:
                border_blending = 1.0
            elif border_blending < 0.0:
                border_blending = 0.0

            blend_ratio = (max(crop_img.size) / 2) * float(border_blending)

            blend = img.convert("RGBA")
            mask = Image.new("L", img.size, 0)

            mask_block = Image.new("L", (paste_region[2]-paste_region[0], paste_region[3]-paste_region[1]), 255)
            mask_block = inset_border(mask_block, round(blend_ratio / 2), (0), border_top, border_bottom, border_left, border_right)
                      
            mask.paste(mask_block, paste_region)
            blend.paste(crop_img, paste_region)

            mask = mask.filter(ImageFilter.BoxBlur(radius=blend_ratio / 4))
            mask = mask.filter(ImageFilter.GaussianBlur(radius=blend_ratio / 4))

            blend.putalpha(mask)
            img = Image.alpha_composite(img.convert("RGBA"), blend)
            out_images.append(img.convert("RGB"))

        return (pil2tensor(out_images),)

class BatchCropFromMaskAdvanced:

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "original_images": ("IMAGE",),
                "masks": ("MASK",),
                "crop_size_mult": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                "bbox_smooth_alpha": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
            },
        }

    RETURN_TYPES = (
        "IMAGE",
        "IMAGE",
        "MASK",
        "IMAGE",
        "MASK",
        "BBOX",
        "BBOX",
        "INT",
        "INT",
    )
    RETURN_NAMES = (
        "original_images",
        "cropped_images",
        "cropped_masks",
        "combined_crop_image",
        "combined_crop_masks",
        "bboxes",
        "combined_bounding_box",
        "bbox_width",
        "bbox_height",
    )
    FUNCTION = "crop"
    CATEGORY = "KJNodes/masking"

    def smooth_bbox_size(self, prev_bbox_size, curr_bbox_size, alpha):
          return round(alpha * curr_bbox_size + (1 - alpha) * prev_bbox_size)

    def smooth_center(self, prev_center, curr_center, alpha=0.5):
        return (round(alpha * curr_center[0] + (1 - alpha) * prev_center[0]),
                round(alpha * curr_center[1] + (1 - alpha) * prev_center[1]))

    def crop(self, masks, original_images, crop_size_mult, bbox_smooth_alpha):
        bounding_boxes = []
        combined_bounding_box = []
        cropped_images = []
        cropped_masks = []
        cropped_masks_out = []
        combined_crop_out = []
        combined_cropped_images = []
        combined_cropped_masks = []
        
        def calculate_bbox(mask):
            non_zero_indices = np.nonzero(np.array(mask))

            # handle empty masks
            min_x, max_x, min_y, max_y = 0, 0, 0, 0
            if len(non_zero_indices[1]) > 0 and len(non_zero_indices[0]) > 0:
                min_x, max_x = np.min(non_zero_indices[1]), np.max(non_zero_indices[1])
                min_y, max_y = np.min(non_zero_indices[0]), np.max(non_zero_indices[0])

            width = max_x - min_x
            height = max_y - min_y
            bbox_size = max(width, height)
            return min_x, max_x, min_y, max_y, bbox_size

        combined_mask = torch.max(masks, dim=0)[0]
        _mask = tensor2pil(combined_mask)[0]
        new_min_x, new_max_x, new_min_y, new_max_y, combined_bbox_size = calculate_bbox(_mask)
        center_x = (new_min_x + new_max_x) / 2
        center_y = (new_min_y + new_max_y) / 2
        half_box_size = round(combined_bbox_size // 2)
        new_min_x = max(0, round(center_x - half_box_size))
        new_max_x = min(original_images[0].shape[1], round(center_x + half_box_size))
        new_min_y = max(0, round(center_y - half_box_size))
        new_max_y = min(original_images[0].shape[0], round(center_y + half_box_size))
        
        combined_bounding_box.append((new_min_x, new_min_y, new_max_x - new_min_x, new_max_y - new_min_y))   
        
        self.max_bbox_size = 0
        
        # First, calculate the maximum bounding box size across all masks
        curr_max_bbox_size = max(calculate_bbox(tensor2pil(mask)[0])[-1] for mask in masks)
        # Smooth the changes in the bounding box size
        self.max_bbox_size = self.smooth_bbox_size(self.max_bbox_size, curr_max_bbox_size, bbox_smooth_alpha)
        # Apply the crop size multiplier
        self.max_bbox_size = round(self.max_bbox_size * crop_size_mult)
        # Make sure max_bbox_size is divisible by 16, if not, round it upwards so it is
        self.max_bbox_size = math.ceil(self.max_bbox_size / 16) * 16

        if self.max_bbox_size > original_images[0].shape[0] or self.max_bbox_size > original_images[0].shape[1]:
            # max_bbox_size can only be as big as our input's width or height, and it has to be even
            self.max_bbox_size = math.floor(min(original_images[0].shape[0], original_images[0].shape[1]) / 2) * 2

        # Then, for each mask and corresponding image...
        for i, (mask, img) in enumerate(zip(masks, original_images)):
            _mask = tensor2pil(mask)[0]
            non_zero_indices = np.nonzero(np.array(_mask))

            # check for empty masks
            if len(non_zero_indices[0]) > 0 and len(non_zero_indices[1]) > 0:
                min_x, max_x = np.min(non_zero_indices[1]), np.max(non_zero_indices[1])
                min_y, max_y = np.min(non_zero_indices[0]), np.max(non_zero_indices[0])

                # Calculate center of bounding box
                center_x = np.mean(non_zero_indices[1])
                center_y = np.mean(non_zero_indices[0])
                curr_center = (round(center_x), round(center_y))

                # If this is the first frame, initialize prev_center with curr_center
                if not hasattr(self, 'prev_center'):
                    self.prev_center = curr_center

                # Smooth the changes in the center coordinates from the second frame onwards
                if i > 0:
                    center = self.smooth_center(self.prev_center, curr_center, bbox_smooth_alpha)
                else:
                    center = curr_center

                # Update prev_center for the next frame
                self.prev_center = center

                # Create bounding box using max_bbox_size
                half_box_size = self.max_bbox_size // 2
                min_x = max(0, center[0] - half_box_size)
                max_x = min(img.shape[1], center[0] + half_box_size)
                min_y = max(0, center[1] - half_box_size)
                max_y = min(img.shape[0], center[1] + half_box_size)

                # Append bounding box coordinates
                bounding_boxes.append((min_x, min_y, max_x - min_x, max_y - min_y))

                # Crop the image from the bounding box
                cropped_img = img[min_y:max_y, min_x:max_x, :]
                cropped_mask = mask[min_y:max_y, min_x:max_x]

                # Resize the cropped image to a fixed size
                new_size = max(cropped_img.shape[0], cropped_img.shape[1])
                resize_transform = Resize(new_size, interpolation=InterpolationMode.NEAREST, max_size=max(img.shape[0], img.shape[1]))
                resized_mask = resize_transform(cropped_mask.unsqueeze(0).unsqueeze(0)).squeeze(0).squeeze(0)
                resized_img = resize_transform(cropped_img.permute(2, 0, 1))
                # Perform the center crop to the desired size
                # Constrain the crop to the smaller of our bbox or our image so we don't expand past the image dimensions.
                crop_transform = CenterCrop((min(self.max_bbox_size, resized_img.shape[1]), min(self.max_bbox_size, resized_img.shape[2])))

                cropped_resized_img = crop_transform(resized_img)
                cropped_images.append(cropped_resized_img.permute(1, 2, 0))

                cropped_resized_mask = crop_transform(resized_mask)
                cropped_masks.append(cropped_resized_mask)

                combined_cropped_img = original_images[i][new_min_y:new_max_y, new_min_x:new_max_x, :]
                combined_cropped_images.append(combined_cropped_img)

                combined_cropped_mask = masks[i][new_min_y:new_max_y, new_min_x:new_max_x]
                combined_cropped_masks.append(combined_cropped_mask)
            else:
                bounding_boxes.append((0, 0, img.shape[1], img.shape[0]))
                cropped_images.append(img)
                cropped_masks.append(mask)
                combined_cropped_images.append(img)
                combined_cropped_masks.append(mask)

        cropped_out = torch.stack(cropped_images, dim=0)
        combined_crop_out = torch.stack(combined_cropped_images, dim=0)
        cropped_masks_out = torch.stack(cropped_masks, dim=0)
        combined_crop_mask_out = torch.stack(combined_cropped_masks, dim=0)

        return (original_images, cropped_out, cropped_masks_out, combined_crop_out, combined_crop_mask_out, bounding_boxes, combined_bounding_box, self.max_bbox_size, self.max_bbox_size)

class FilterZeroMasksAndCorrespondingImages:

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "masks": ("MASK",),
            },
            "optional": {
                "original_images": ("IMAGE",), 
            },
        }

    RETURN_TYPES = ("MASK", "IMAGE", "IMAGE", "INDEXES",)
    RETURN_NAMES = ("non_zero_masks_out", "non_zero_mask_images_out", "zero_mask_images_out", "zero_mask_images_out_indexes",)
    FUNCTION = "filter"
    CATEGORY = "KJNodes/masking"
    DESCRIPTION = """
Filter out all the empty (i.e. all zero) mask in masks  
Also filter out all the corresponding images in original_images by indexes if provide  
  
original_images (optional): If provided, need have same length as masks.
"""
    
    def filter(self, masks, original_images=None):
        non_zero_masks = []
        non_zero_mask_images = []
        zero_mask_images = []
        zero_mask_images_indexes = []
        
        masks_num = len(masks)
        also_process_images = False
        if original_images is not None:
            imgs_num = len(original_images)
            if len(original_images) == masks_num:
                also_process_images = True
            else:
                print(f"[WARNING] ignore input: original_images, due to number of original_images ({imgs_num}) is not equal to number of masks ({masks_num})")
        
        for i in range(masks_num):
            non_zero_num = np.count_nonzero(np.array(masks[i]))
            if non_zero_num > 0:
                non_zero_masks.append(masks[i])
                if also_process_images:
                    non_zero_mask_images.append(original_images[i])
            else:
                zero_mask_images.append(original_images[i])
                zero_mask_images_indexes.append(i)

        non_zero_masks_out = torch.stack(non_zero_masks, dim=0)
        non_zero_mask_images_out = zero_mask_images_out = zero_mask_images_out_indexes = None
        
        if also_process_images:
            non_zero_mask_images_out = torch.stack(non_zero_mask_images, dim=0)
            if len(zero_mask_images) > 0:
                zero_mask_images_out = torch.stack(zero_mask_images, dim=0)
                zero_mask_images_out_indexes = zero_mask_images_indexes

        return (non_zero_masks_out, non_zero_mask_images_out, zero_mask_images_out, zero_mask_images_out_indexes)

class InsertImageBatchByIndexes:

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "images": ("IMAGE",), 
                "images_to_insert": ("IMAGE",), 
                "insert_indexes": ("INDEXES",),
            },
        }

    RETURN_TYPES = ("IMAGE", )
    RETURN_NAMES = ("images_after_insert", )
    FUNCTION = "insert"
    CATEGORY = "KJNodes/image"
    DESCRIPTION = """
This node is designed to be use with node FilterZeroMasksAndCorrespondingImages
It inserts the images_to_insert into images according to insert_indexes

Returns:
    images_after_insert: updated original images with origonal sequence order
"""
    
    def insert(self, images, images_to_insert, insert_indexes):        
        images_after_insert = images
        
        if images_to_insert is not None and insert_indexes is not None:
            images_to_insert_num = len(images_to_insert)
            insert_indexes_num = len(insert_indexes)
            if images_to_insert_num == insert_indexes_num:
                images_after_insert = []

                i_images = 0
                for i in range(len(images) + images_to_insert_num):
                    if i in insert_indexes:
                        images_after_insert.append(images_to_insert[insert_indexes.index(i)])
                    else:
                        images_after_insert.append(images[i_images])
                        i_images += 1
                        
                images_after_insert = torch.stack(images_after_insert, dim=0)
                
            else:
                print(f"[WARNING] skip this node, due to number of images_to_insert ({images_to_insert_num}) is not equal to number of insert_indexes ({insert_indexes_num})")


        return (images_after_insert, )

class BatchUncropAdvanced:

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "original_images": ("IMAGE",),
                "cropped_images": ("IMAGE",), 
                "cropped_masks": ("MASK",),
                "combined_crop_mask": ("MASK",),
                "bboxes": ("BBOX",),
                "border_blending": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 1.0, "step": 0.01}, ),
                "crop_rescale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                "use_combined_mask": ("BOOLEAN", {"default": False}),
                "use_square_mask": ("BOOLEAN", {"default": True}),
            },
            "optional": {
                "combined_bounding_box": ("BBOX", {"default": None}),  
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "uncrop"
    CATEGORY = "KJNodes/masking"


    def uncrop(self, original_images, cropped_images, cropped_masks, combined_crop_mask, bboxes, border_blending, crop_rescale, use_combined_mask, use_square_mask, combined_bounding_box = None):
        
        def inset_border(image, border_width=20, border_color=(0)):
            width, height = image.size
            bordered_image = Image.new(image.mode, (width, height), border_color)
            bordered_image.paste(image, (0, 0))
            draw = ImageDraw.Draw(bordered_image)
            draw.rectangle((0, 0, width - 1, height - 1), outline=border_color, width=border_width)
            return bordered_image

        if len(original_images) != len(cropped_images):
            raise ValueError(f"The number of original_images ({len(original_images)}) and cropped_images ({len(cropped_images)}) should be the same")

        # Ensure there are enough bboxes, but drop the excess if there are more bboxes than images
        if len(bboxes) > len(original_images):
            print(f"Warning: Dropping excess bounding boxes. Expected {len(original_images)}, but got {len(bboxes)}")
            bboxes = bboxes[:len(original_images)]
        elif len(bboxes) < len(original_images):
            raise ValueError("There should be at least as many bboxes as there are original and cropped images")

        crop_imgs = tensor2pil(cropped_images)
        input_images = tensor2pil(original_images)
        out_images = []

        for i in range(len(input_images)):
            img = input_images[i]
            crop = crop_imgs[i]
            bbox = bboxes[i]
            
            if use_combined_mask:
                bb_x, bb_y, bb_width, bb_height = combined_bounding_box[0]
                paste_region = bbox_to_region((bb_x, bb_y, bb_width, bb_height), img.size)
                mask = combined_crop_mask[i]
            else:
                bb_x, bb_y, bb_width, bb_height = bbox
                paste_region = bbox_to_region((bb_x, bb_y, bb_width, bb_height), img.size)
                mask = cropped_masks[i]
            
            # scale paste_region
            scale_x = scale_y = crop_rescale
            paste_region = (round(paste_region[0]*scale_x), round(paste_region[1]*scale_y), round(paste_region[2]*scale_x), round(paste_region[3]*scale_y))

            # rescale the crop image to fit the paste_region
            crop = crop.resize((round(paste_region[2]-paste_region[0]), round(paste_region[3]-paste_region[1])))
            crop_img = crop.convert("RGB")

            #border blending
            if border_blending > 1.0:
                border_blending = 1.0
            elif border_blending < 0.0:
                border_blending = 0.0

            blend_ratio = (max(crop_img.size) / 2) * float(border_blending)
            blend = img.convert("RGBA")

            if use_square_mask:
                mask = Image.new("L", img.size, 0)
                mask_block = Image.new("L", (paste_region[2]-paste_region[0], paste_region[3]-paste_region[1]), 255)
                mask_block = inset_border(mask_block, round(blend_ratio / 2), (0))
                mask.paste(mask_block, paste_region)
            else:
                original_mask = tensor2pil(mask)[0]
                original_mask = original_mask.resize((paste_region[2]-paste_region[0], paste_region[3]-paste_region[1]))
                mask = Image.new("L", img.size, 0)
                mask.paste(original_mask, paste_region)

            mask = mask.filter(ImageFilter.BoxBlur(radius=blend_ratio / 4))
            mask = mask.filter(ImageFilter.GaussianBlur(radius=blend_ratio / 4))

            blend.paste(crop_img, paste_region) 
            blend.putalpha(mask)
            
            img = Image.alpha_composite(img.convert("RGBA"), blend)
            out_images.append(img.convert("RGB"))

        return (pil2tensor(out_images),)

class SplitBboxes:

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "bboxes": ("BBOX",),
                "index": ("INT", {"default": 0,"min": 0, "max": 99999999, "step": 1}),
            },
        }

    RETURN_TYPES = ("BBOX","BBOX",)
    RETURN_NAMES = ("bboxes_a","bboxes_b",)
    FUNCTION = "splitbbox"
    CATEGORY = "KJNodes/masking"
    DESCRIPTION = """
Splits the specified bbox list at the given index into two lists.
"""

    def splitbbox(self, bboxes, index):
        bboxes_a = bboxes[:index]  # Sub-list from the start of bboxes up to (but not including) the index
        bboxes_b = bboxes[index:]  # Sub-list from the index to the end of bboxes

        return (bboxes_a, bboxes_b,)
    
class BboxToInt:

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "bboxes": ("BBOX",),
                "index": ("INT", {"default": 0,"min": 0, "max": 99999999, "step": 1}),
            },
        }

    RETURN_TYPES = ("INT","INT","INT","INT","INT","INT",)
    RETURN_NAMES = ("x_min","y_min","width","height", "center_x","center_y",)
    FUNCTION = "bboxtoint"
    CATEGORY = "KJNodes/masking"
    DESCRIPTION = """
Returns selected index from bounding box list as integers.
"""
    def bboxtoint(self, bboxes, index):
        x_min, y_min, width, height = bboxes[index]
        center_x = int(x_min + width / 2)
        center_y = int(y_min + height / 2)
        
        return (x_min, y_min, width, height, center_x, center_y,)

class BboxVisualize:

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "images": ("IMAGE",),
                "bboxes": ("BBOX",),
                "line_width": ("INT", {"default": 1,"min": 1, "max": 10, "step": 1}),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    RETURN_NAMES = ("images",)
    FUNCTION = "visualizebbox"
    DESCRIPTION = """
Visualizes the specified bbox on the image.
"""

    CATEGORY = "KJNodes/masking"

    def visualizebbox(self, bboxes, images, line_width):
        image_list = []
        for image, bbox in zip(images, bboxes):
            x_min, y_min, width, height = bbox
            
            # Ensure bbox coordinates are integers
            x_min = int(x_min)
            y_min = int(y_min)
            width = int(width)
            height = int(height)
            
            # Permute the image dimensions
            image = image.permute(2, 0, 1)

            # Clone the image to draw bounding boxes
            img_with_bbox = image.clone()
            
            # Define the color for the bbox, e.g., red
            color = torch.tensor([1, 0, 0], dtype=torch.float32)
            
            # Ensure color tensor matches the image channels
            if color.shape[0] != img_with_bbox.shape[0]:
                color = color.unsqueeze(1).expand(-1, line_width)

            # Draw lines for each side of the bbox with the specified line width
            for lw in range(line_width):
                # Top horizontal line
                if y_min + lw < img_with_bbox.shape[1]:
                    img_with_bbox[:, y_min + lw, x_min:x_min + width] = color[:, None]
                
                # Bottom horizontal line
                if y_min + height - lw < img_with_bbox.shape[1]:
                    img_with_bbox[:, y_min + height - lw, x_min:x_min + width] = color[:, None]
                
                # Left vertical line
                if x_min + lw < img_with_bbox.shape[2]:
                    img_with_bbox[:, y_min:y_min + height, x_min + lw] = color[:, None]
                
                # Right vertical line
                if x_min + width - lw < img_with_bbox.shape[2]:
                    img_with_bbox[:, y_min:y_min + height, x_min + width - lw] = color[:, None]
        
            # Permute the image dimensions back
            img_with_bbox = img_with_bbox.permute(1, 2, 0).unsqueeze(0)
            image_list.append(img_with_bbox)

        return (torch.cat(image_list, dim=0),)

        return (torch.cat(image_list, dim=0),)