Spaces:
Starting
on
L40S
Starting
on
L40S
#code taken from: https://github.com/wl-zhao/UniPC and modified | |
import torch | |
import torch.nn.functional as F | |
import math | |
from tqdm.auto import trange, tqdm | |
class NoiseScheduleVP: | |
def __init__( | |
self, | |
schedule='discrete', | |
betas=None, | |
alphas_cumprod=None, | |
continuous_beta_0=0.1, | |
continuous_beta_1=20., | |
): | |
r"""Create a wrapper class for the forward SDE (VP type). | |
*** | |
Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t. | |
We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images. | |
*** | |
The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ). | |
We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper). | |
Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have: | |
log_alpha_t = self.marginal_log_mean_coeff(t) | |
sigma_t = self.marginal_std(t) | |
lambda_t = self.marginal_lambda(t) | |
Moreover, as lambda(t) is an invertible function, we also support its inverse function: | |
t = self.inverse_lambda(lambda_t) | |
=============================================================== | |
We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]). | |
1. For discrete-time DPMs: | |
For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by: | |
t_i = (i + 1) / N | |
e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1. | |
We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3. | |
Args: | |
betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details) | |
alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details) | |
Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`. | |
**Important**: Please pay special attention for the args for `alphas_cumprod`: | |
The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that | |
q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ). | |
Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have | |
alpha_{t_n} = \sqrt{\hat{alpha_n}}, | |
and | |
log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}). | |
2. For continuous-time DPMs: | |
We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise | |
schedule are the default settings in DDPM and improved-DDPM: | |
Args: | |
beta_min: A `float` number. The smallest beta for the linear schedule. | |
beta_max: A `float` number. The largest beta for the linear schedule. | |
cosine_s: A `float` number. The hyperparameter in the cosine schedule. | |
cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule. | |
T: A `float` number. The ending time of the forward process. | |
=============================================================== | |
Args: | |
schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs, | |
'linear' or 'cosine' for continuous-time DPMs. | |
Returns: | |
A wrapper object of the forward SDE (VP type). | |
=============================================================== | |
Example: | |
# For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1): | |
>>> ns = NoiseScheduleVP('discrete', betas=betas) | |
# For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1): | |
>>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod) | |
# For continuous-time DPMs (VPSDE), linear schedule: | |
>>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.) | |
""" | |
if schedule not in ['discrete', 'linear', 'cosine']: | |
raise ValueError("Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(schedule)) | |
self.schedule = schedule | |
if schedule == 'discrete': | |
if betas is not None: | |
log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0) | |
else: | |
assert alphas_cumprod is not None | |
log_alphas = 0.5 * torch.log(alphas_cumprod) | |
self.total_N = len(log_alphas) | |
self.T = 1. | |
self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1)) | |
self.log_alpha_array = log_alphas.reshape((1, -1,)) | |
else: | |
self.total_N = 1000 | |
self.beta_0 = continuous_beta_0 | |
self.beta_1 = continuous_beta_1 | |
self.cosine_s = 0.008 | |
self.cosine_beta_max = 999. | |
self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s | |
self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.)) | |
self.schedule = schedule | |
if schedule == 'cosine': | |
# For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T. | |
# Note that T = 0.9946 may be not the optimal setting. However, we find it works well. | |
self.T = 0.9946 | |
else: | |
self.T = 1. | |
def marginal_log_mean_coeff(self, t): | |
""" | |
Compute log(alpha_t) of a given continuous-time label t in [0, T]. | |
""" | |
if self.schedule == 'discrete': | |
return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)).reshape((-1)) | |
elif self.schedule == 'linear': | |
return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0 | |
elif self.schedule == 'cosine': | |
log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.)) | |
log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0 | |
return log_alpha_t | |
def marginal_alpha(self, t): | |
""" | |
Compute alpha_t of a given continuous-time label t in [0, T]. | |
""" | |
return torch.exp(self.marginal_log_mean_coeff(t)) | |
def marginal_std(self, t): | |
""" | |
Compute sigma_t of a given continuous-time label t in [0, T]. | |
""" | |
return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t))) | |
def marginal_lambda(self, t): | |
""" | |
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T]. | |
""" | |
log_mean_coeff = self.marginal_log_mean_coeff(t) | |
log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff)) | |
return log_mean_coeff - log_std | |
def inverse_lambda(self, lamb): | |
""" | |
Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t. | |
""" | |
if self.schedule == 'linear': | |
tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb)) | |
Delta = self.beta_0**2 + tmp | |
return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0) | |
elif self.schedule == 'discrete': | |
log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb) | |
t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1])) | |
return t.reshape((-1,)) | |
else: | |
log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb)) | |
t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s | |
t = t_fn(log_alpha) | |
return t | |
def model_wrapper( | |
model, | |
noise_schedule, | |
model_type="noise", | |
model_kwargs={}, | |
guidance_type="uncond", | |
condition=None, | |
unconditional_condition=None, | |
guidance_scale=1., | |
classifier_fn=None, | |
classifier_kwargs={}, | |
): | |
"""Create a wrapper function for the noise prediction model. | |
DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to | |
firstly wrap the model function to a noise prediction model that accepts the continuous time as the input. | |
We support four types of the diffusion model by setting `model_type`: | |
1. "noise": noise prediction model. (Trained by predicting noise). | |
2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0). | |
3. "v": velocity prediction model. (Trained by predicting the velocity). | |
The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2]. | |
[1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models." | |
arXiv preprint arXiv:2202.00512 (2022). | |
[2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models." | |
arXiv preprint arXiv:2210.02303 (2022). | |
4. "score": marginal score function. (Trained by denoising score matching). | |
Note that the score function and the noise prediction model follows a simple relationship: | |
``` | |
noise(x_t, t) = -sigma_t * score(x_t, t) | |
``` | |
We support three types of guided sampling by DPMs by setting `guidance_type`: | |
1. "uncond": unconditional sampling by DPMs. | |
The input `model` has the following format: | |
`` | |
model(x, t_input, **model_kwargs) -> noise | x_start | v | score | |
`` | |
2. "classifier": classifier guidance sampling [3] by DPMs and another classifier. | |
The input `model` has the following format: | |
`` | |
model(x, t_input, **model_kwargs) -> noise | x_start | v | score | |
`` | |
The input `classifier_fn` has the following format: | |
`` | |
classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond) | |
`` | |
[3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis," | |
in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794. | |
3. "classifier-free": classifier-free guidance sampling by conditional DPMs. | |
The input `model` has the following format: | |
`` | |
model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score | |
`` | |
And if cond == `unconditional_condition`, the model output is the unconditional DPM output. | |
[4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance." | |
arXiv preprint arXiv:2207.12598 (2022). | |
The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999) | |
or continuous-time labels (i.e. epsilon to T). | |
We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise: | |
`` | |
def model_fn(x, t_continuous) -> noise: | |
t_input = get_model_input_time(t_continuous) | |
return noise_pred(model, x, t_input, **model_kwargs) | |
`` | |
where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver. | |
=============================================================== | |
Args: | |
model: A diffusion model with the corresponding format described above. | |
noise_schedule: A noise schedule object, such as NoiseScheduleVP. | |
model_type: A `str`. The parameterization type of the diffusion model. | |
"noise" or "x_start" or "v" or "score". | |
model_kwargs: A `dict`. A dict for the other inputs of the model function. | |
guidance_type: A `str`. The type of the guidance for sampling. | |
"uncond" or "classifier" or "classifier-free". | |
condition: A pytorch tensor. The condition for the guided sampling. | |
Only used for "classifier" or "classifier-free" guidance type. | |
unconditional_condition: A pytorch tensor. The condition for the unconditional sampling. | |
Only used for "classifier-free" guidance type. | |
guidance_scale: A `float`. The scale for the guided sampling. | |
classifier_fn: A classifier function. Only used for the classifier guidance. | |
classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function. | |
Returns: | |
A noise prediction model that accepts the noised data and the continuous time as the inputs. | |
""" | |
def get_model_input_time(t_continuous): | |
""" | |
Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time. | |
For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N]. | |
For continuous-time DPMs, we just use `t_continuous`. | |
""" | |
if noise_schedule.schedule == 'discrete': | |
return (t_continuous - 1. / noise_schedule.total_N) * 1000. | |
else: | |
return t_continuous | |
def noise_pred_fn(x, t_continuous, cond=None): | |
if t_continuous.reshape((-1,)).shape[0] == 1: | |
t_continuous = t_continuous.expand((x.shape[0])) | |
t_input = get_model_input_time(t_continuous) | |
output = model(x, t_input, **model_kwargs) | |
if model_type == "noise": | |
return output | |
elif model_type == "x_start": | |
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous) | |
dims = x.dim() | |
return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims) | |
elif model_type == "v": | |
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous) | |
dims = x.dim() | |
return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x | |
elif model_type == "score": | |
sigma_t = noise_schedule.marginal_std(t_continuous) | |
dims = x.dim() | |
return -expand_dims(sigma_t, dims) * output | |
def cond_grad_fn(x, t_input): | |
""" | |
Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t). | |
""" | |
with torch.enable_grad(): | |
x_in = x.detach().requires_grad_(True) | |
log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs) | |
return torch.autograd.grad(log_prob.sum(), x_in)[0] | |
def model_fn(x, t_continuous): | |
""" | |
The noise predicition model function that is used for DPM-Solver. | |
""" | |
if t_continuous.reshape((-1,)).shape[0] == 1: | |
t_continuous = t_continuous.expand((x.shape[0])) | |
if guidance_type == "uncond": | |
return noise_pred_fn(x, t_continuous) | |
elif guidance_type == "classifier": | |
assert classifier_fn is not None | |
t_input = get_model_input_time(t_continuous) | |
cond_grad = cond_grad_fn(x, t_input) | |
sigma_t = noise_schedule.marginal_std(t_continuous) | |
noise = noise_pred_fn(x, t_continuous) | |
return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad | |
elif guidance_type == "classifier-free": | |
if guidance_scale == 1. or unconditional_condition is None: | |
return noise_pred_fn(x, t_continuous, cond=condition) | |
else: | |
x_in = torch.cat([x] * 2) | |
t_in = torch.cat([t_continuous] * 2) | |
c_in = torch.cat([unconditional_condition, condition]) | |
noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2) | |
return noise_uncond + guidance_scale * (noise - noise_uncond) | |
assert model_type in ["noise", "x_start", "v"] | |
assert guidance_type in ["uncond", "classifier", "classifier-free"] | |
return model_fn | |
class UniPC: | |
def __init__( | |
self, | |
model_fn, | |
noise_schedule, | |
predict_x0=True, | |
thresholding=False, | |
max_val=1., | |
variant='bh1', | |
): | |
"""Construct a UniPC. | |
We support both data_prediction and noise_prediction. | |
""" | |
self.model = model_fn | |
self.noise_schedule = noise_schedule | |
self.variant = variant | |
self.predict_x0 = predict_x0 | |
self.thresholding = thresholding | |
self.max_val = max_val | |
def dynamic_thresholding_fn(self, x0, t=None): | |
""" | |
The dynamic thresholding method. | |
""" | |
dims = x0.dim() | |
p = self.dynamic_thresholding_ratio | |
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1) | |
s = expand_dims(torch.maximum(s, self.thresholding_max_val * torch.ones_like(s).to(s.device)), dims) | |
x0 = torch.clamp(x0, -s, s) / s | |
return x0 | |
def noise_prediction_fn(self, x, t): | |
""" | |
Return the noise prediction model. | |
""" | |
return self.model(x, t) | |
def data_prediction_fn(self, x, t): | |
""" | |
Return the data prediction model (with thresholding). | |
""" | |
noise = self.noise_prediction_fn(x, t) | |
dims = x.dim() | |
alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t) | |
x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims) | |
if self.thresholding: | |
p = 0.995 # A hyperparameter in the paper of "Imagen" [1]. | |
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1) | |
s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims) | |
x0 = torch.clamp(x0, -s, s) / s | |
return x0 | |
def model_fn(self, x, t): | |
""" | |
Convert the model to the noise prediction model or the data prediction model. | |
""" | |
if self.predict_x0: | |
return self.data_prediction_fn(x, t) | |
else: | |
return self.noise_prediction_fn(x, t) | |
def get_time_steps(self, skip_type, t_T, t_0, N, device): | |
"""Compute the intermediate time steps for sampling. | |
""" | |
if skip_type == 'logSNR': | |
lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device)) | |
lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device)) | |
logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device) | |
return self.noise_schedule.inverse_lambda(logSNR_steps) | |
elif skip_type == 'time_uniform': | |
return torch.linspace(t_T, t_0, N + 1).to(device) | |
elif skip_type == 'time_quadratic': | |
t_order = 2 | |
t = torch.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1).pow(t_order).to(device) | |
return t | |
else: | |
raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type)) | |
def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device): | |
""" | |
Get the order of each step for sampling by the singlestep DPM-Solver. | |
""" | |
if order == 3: | |
K = steps // 3 + 1 | |
if steps % 3 == 0: | |
orders = [3,] * (K - 2) + [2, 1] | |
elif steps % 3 == 1: | |
orders = [3,] * (K - 1) + [1] | |
else: | |
orders = [3,] * (K - 1) + [2] | |
elif order == 2: | |
if steps % 2 == 0: | |
K = steps // 2 | |
orders = [2,] * K | |
else: | |
K = steps // 2 + 1 | |
orders = [2,] * (K - 1) + [1] | |
elif order == 1: | |
K = steps | |
orders = [1,] * steps | |
else: | |
raise ValueError("'order' must be '1' or '2' or '3'.") | |
if skip_type == 'logSNR': | |
# To reproduce the results in DPM-Solver paper | |
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device) | |
else: | |
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[torch.cumsum(torch.tensor([0,] + orders), 0).to(device)] | |
return timesteps_outer, orders | |
def denoise_to_zero_fn(self, x, s): | |
""" | |
Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization. | |
""" | |
return self.data_prediction_fn(x, s) | |
def multistep_uni_pc_update(self, x, model_prev_list, t_prev_list, t, order, **kwargs): | |
if len(t.shape) == 0: | |
t = t.view(-1) | |
if 'bh' in self.variant: | |
return self.multistep_uni_pc_bh_update(x, model_prev_list, t_prev_list, t, order, **kwargs) | |
else: | |
assert self.variant == 'vary_coeff' | |
return self.multistep_uni_pc_vary_update(x, model_prev_list, t_prev_list, t, order, **kwargs) | |
def multistep_uni_pc_vary_update(self, x, model_prev_list, t_prev_list, t, order, use_corrector=True): | |
print(f'using unified predictor-corrector with order {order} (solver type: vary coeff)') | |
ns = self.noise_schedule | |
assert order <= len(model_prev_list) | |
# first compute rks | |
t_prev_0 = t_prev_list[-1] | |
lambda_prev_0 = ns.marginal_lambda(t_prev_0) | |
lambda_t = ns.marginal_lambda(t) | |
model_prev_0 = model_prev_list[-1] | |
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t) | |
log_alpha_t = ns.marginal_log_mean_coeff(t) | |
alpha_t = torch.exp(log_alpha_t) | |
h = lambda_t - lambda_prev_0 | |
rks = [] | |
D1s = [] | |
for i in range(1, order): | |
t_prev_i = t_prev_list[-(i + 1)] | |
model_prev_i = model_prev_list[-(i + 1)] | |
lambda_prev_i = ns.marginal_lambda(t_prev_i) | |
rk = (lambda_prev_i - lambda_prev_0) / h | |
rks.append(rk) | |
D1s.append((model_prev_i - model_prev_0) / rk) | |
rks.append(1.) | |
rks = torch.tensor(rks, device=x.device) | |
K = len(rks) | |
# build C matrix | |
C = [] | |
col = torch.ones_like(rks) | |
for k in range(1, K + 1): | |
C.append(col) | |
col = col * rks / (k + 1) | |
C = torch.stack(C, dim=1) | |
if len(D1s) > 0: | |
D1s = torch.stack(D1s, dim=1) # (B, K) | |
C_inv_p = torch.linalg.inv(C[:-1, :-1]) | |
A_p = C_inv_p | |
if use_corrector: | |
print('using corrector') | |
C_inv = torch.linalg.inv(C) | |
A_c = C_inv | |
hh = -h if self.predict_x0 else h | |
h_phi_1 = torch.expm1(hh) | |
h_phi_ks = [] | |
factorial_k = 1 | |
h_phi_k = h_phi_1 | |
for k in range(1, K + 2): | |
h_phi_ks.append(h_phi_k) | |
h_phi_k = h_phi_k / hh - 1 / factorial_k | |
factorial_k *= (k + 1) | |
model_t = None | |
if self.predict_x0: | |
x_t_ = ( | |
sigma_t / sigma_prev_0 * x | |
- alpha_t * h_phi_1 * model_prev_0 | |
) | |
# now predictor | |
x_t = x_t_ | |
if len(D1s) > 0: | |
# compute the residuals for predictor | |
for k in range(K - 1): | |
x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k]) | |
# now corrector | |
if use_corrector: | |
model_t = self.model_fn(x_t, t) | |
D1_t = (model_t - model_prev_0) | |
x_t = x_t_ | |
k = 0 | |
for k in range(K - 1): | |
x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1]) | |
x_t = x_t - alpha_t * h_phi_ks[K] * (D1_t * A_c[k][-1]) | |
else: | |
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t) | |
x_t_ = ( | |
(torch.exp(log_alpha_t - log_alpha_prev_0)) * x | |
- (sigma_t * h_phi_1) * model_prev_0 | |
) | |
# now predictor | |
x_t = x_t_ | |
if len(D1s) > 0: | |
# compute the residuals for predictor | |
for k in range(K - 1): | |
x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k]) | |
# now corrector | |
if use_corrector: | |
model_t = self.model_fn(x_t, t) | |
D1_t = (model_t - model_prev_0) | |
x_t = x_t_ | |
k = 0 | |
for k in range(K - 1): | |
x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1]) | |
x_t = x_t - sigma_t * h_phi_ks[K] * (D1_t * A_c[k][-1]) | |
return x_t, model_t | |
def multistep_uni_pc_bh_update(self, x, model_prev_list, t_prev_list, t, order, x_t=None, use_corrector=True): | |
# print(f'using unified predictor-corrector with order {order} (solver type: B(h))') | |
ns = self.noise_schedule | |
assert order <= len(model_prev_list) | |
dims = x.dim() | |
# first compute rks | |
t_prev_0 = t_prev_list[-1] | |
lambda_prev_0 = ns.marginal_lambda(t_prev_0) | |
lambda_t = ns.marginal_lambda(t) | |
model_prev_0 = model_prev_list[-1] | |
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t) | |
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t) | |
alpha_t = torch.exp(log_alpha_t) | |
h = lambda_t - lambda_prev_0 | |
rks = [] | |
D1s = [] | |
for i in range(1, order): | |
t_prev_i = t_prev_list[-(i + 1)] | |
model_prev_i = model_prev_list[-(i + 1)] | |
lambda_prev_i = ns.marginal_lambda(t_prev_i) | |
rk = ((lambda_prev_i - lambda_prev_0) / h)[0] | |
rks.append(rk) | |
D1s.append((model_prev_i - model_prev_0) / rk) | |
rks.append(1.) | |
rks = torch.tensor(rks, device=x.device) | |
R = [] | |
b = [] | |
hh = -h[0] if self.predict_x0 else h[0] | |
h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1 | |
h_phi_k = h_phi_1 / hh - 1 | |
factorial_i = 1 | |
if self.variant == 'bh1': | |
B_h = hh | |
elif self.variant == 'bh2': | |
B_h = torch.expm1(hh) | |
else: | |
raise NotImplementedError() | |
for i in range(1, order + 1): | |
R.append(torch.pow(rks, i - 1)) | |
b.append(h_phi_k * factorial_i / B_h) | |
factorial_i *= (i + 1) | |
h_phi_k = h_phi_k / hh - 1 / factorial_i | |
R = torch.stack(R) | |
b = torch.tensor(b, device=x.device) | |
# now predictor | |
use_predictor = len(D1s) > 0 and x_t is None | |
if len(D1s) > 0: | |
D1s = torch.stack(D1s, dim=1) # (B, K) | |
if x_t is None: | |
# for order 2, we use a simplified version | |
if order == 2: | |
rhos_p = torch.tensor([0.5], device=b.device) | |
else: | |
rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1]) | |
else: | |
D1s = None | |
if use_corrector: | |
# print('using corrector') | |
# for order 1, we use a simplified version | |
if order == 1: | |
rhos_c = torch.tensor([0.5], device=b.device) | |
else: | |
rhos_c = torch.linalg.solve(R, b) | |
model_t = None | |
if self.predict_x0: | |
x_t_ = ( | |
expand_dims(sigma_t / sigma_prev_0, dims) * x | |
- expand_dims(alpha_t * h_phi_1, dims)* model_prev_0 | |
) | |
if x_t is None: | |
if use_predictor: | |
pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s) | |
else: | |
pred_res = 0 | |
x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * pred_res | |
if use_corrector: | |
model_t = self.model_fn(x_t, t) | |
if D1s is not None: | |
corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s) | |
else: | |
corr_res = 0 | |
D1_t = (model_t - model_prev_0) | |
x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t) | |
else: | |
x_t_ = ( | |
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x | |
- expand_dims(sigma_t * h_phi_1, dims) * model_prev_0 | |
) | |
if x_t is None: | |
if use_predictor: | |
pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s) | |
else: | |
pred_res = 0 | |
x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * pred_res | |
if use_corrector: | |
model_t = self.model_fn(x_t, t) | |
if D1s is not None: | |
corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s) | |
else: | |
corr_res = 0 | |
D1_t = (model_t - model_prev_0) | |
x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t) | |
return x_t, model_t | |
def sample(self, x, timesteps, t_start=None, t_end=None, order=3, skip_type='time_uniform', | |
method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver', | |
atol=0.0078, rtol=0.05, corrector=False, callback=None, disable_pbar=False | |
): | |
# t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end | |
# t_T = self.noise_schedule.T if t_start is None else t_start | |
device = x.device | |
steps = len(timesteps) - 1 | |
if method == 'multistep': | |
assert steps >= order | |
# timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device) | |
assert timesteps.shape[0] - 1 == steps | |
# with torch.no_grad(): | |
for step_index in trange(steps, disable=disable_pbar): | |
if step_index == 0: | |
vec_t = timesteps[0].expand((x.shape[0])) | |
model_prev_list = [self.model_fn(x, vec_t)] | |
t_prev_list = [vec_t] | |
elif step_index < order: | |
init_order = step_index | |
# Init the first `order` values by lower order multistep DPM-Solver. | |
# for init_order in range(1, order): | |
vec_t = timesteps[init_order].expand(x.shape[0]) | |
x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, init_order, use_corrector=True) | |
if model_x is None: | |
model_x = self.model_fn(x, vec_t) | |
model_prev_list.append(model_x) | |
t_prev_list.append(vec_t) | |
else: | |
extra_final_step = 0 | |
if step_index == (steps - 1): | |
extra_final_step = 1 | |
for step in range(step_index, step_index + 1 + extra_final_step): | |
vec_t = timesteps[step].expand(x.shape[0]) | |
if lower_order_final: | |
step_order = min(order, steps + 1 - step) | |
else: | |
step_order = order | |
# print('this step order:', step_order) | |
if step == steps: | |
# print('do not run corrector at the last step') | |
use_corrector = False | |
else: | |
use_corrector = True | |
x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, step_order, use_corrector=use_corrector) | |
for i in range(order - 1): | |
t_prev_list[i] = t_prev_list[i + 1] | |
model_prev_list[i] = model_prev_list[i + 1] | |
t_prev_list[-1] = vec_t | |
# We do not need to evaluate the final model value. | |
if step < steps: | |
if model_x is None: | |
model_x = self.model_fn(x, vec_t) | |
model_prev_list[-1] = model_x | |
if callback is not None: | |
callback({'x': x, 'i': step_index, 'denoised': model_prev_list[-1]}) | |
else: | |
raise NotImplementedError() | |
# if denoise_to_zero: | |
# x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0) | |
return x | |
############################################################# | |
# other utility functions | |
############################################################# | |
def interpolate_fn(x, xp, yp): | |
""" | |
A piecewise linear function y = f(x), using xp and yp as keypoints. | |
We implement f(x) in a differentiable way (i.e. applicable for autograd). | |
The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.) | |
Args: | |
x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver). | |
xp: PyTorch tensor with shape [C, K], where K is the number of keypoints. | |
yp: PyTorch tensor with shape [C, K]. | |
Returns: | |
The function values f(x), with shape [N, C]. | |
""" | |
N, K = x.shape[0], xp.shape[1] | |
all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2) | |
sorted_all_x, x_indices = torch.sort(all_x, dim=2) | |
x_idx = torch.argmin(x_indices, dim=2) | |
cand_start_idx = x_idx - 1 | |
start_idx = torch.where( | |
torch.eq(x_idx, 0), | |
torch.tensor(1, device=x.device), | |
torch.where( | |
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx, | |
), | |
) | |
end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1) | |
start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2) | |
end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2) | |
start_idx2 = torch.where( | |
torch.eq(x_idx, 0), | |
torch.tensor(0, device=x.device), | |
torch.where( | |
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx, | |
), | |
) | |
y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1) | |
start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2) | |
end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2) | |
cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x) | |
return cand | |
def expand_dims(v, dims): | |
""" | |
Expand the tensor `v` to the dim `dims`. | |
Args: | |
`v`: a PyTorch tensor with shape [N]. | |
`dim`: a `int`. | |
Returns: | |
a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`. | |
""" | |
return v[(...,) + (None,)*(dims - 1)] | |
class SigmaConvert: | |
schedule = "" | |
def marginal_log_mean_coeff(self, sigma): | |
return 0.5 * torch.log(1 / ((sigma * sigma) + 1)) | |
def marginal_alpha(self, t): | |
return torch.exp(self.marginal_log_mean_coeff(t)) | |
def marginal_std(self, t): | |
return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t))) | |
def marginal_lambda(self, t): | |
""" | |
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T]. | |
""" | |
log_mean_coeff = self.marginal_log_mean_coeff(t) | |
log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff)) | |
return log_mean_coeff - log_std | |
def predict_eps_sigma(model, input, sigma_in, **kwargs): | |
sigma = sigma_in.view(sigma_in.shape[:1] + (1,) * (input.ndim - 1)) | |
input = input * ((sigma ** 2 + 1.0) ** 0.5) | |
return (input - model(input, sigma_in, **kwargs)) / sigma | |
def sample_unipc(model, noise, sigmas, extra_args=None, callback=None, disable=False, variant='bh1'): | |
timesteps = sigmas.clone() | |
if sigmas[-1] == 0: | |
timesteps = sigmas[:] | |
timesteps[-1] = 0.001 | |
else: | |
timesteps = sigmas.clone() | |
ns = SigmaConvert() | |
noise = noise / torch.sqrt(1.0 + timesteps[0] ** 2.0) | |
model_type = "noise" | |
model_fn = model_wrapper( | |
lambda input, sigma, **kwargs: predict_eps_sigma(model, input, sigma, **kwargs), | |
ns, | |
model_type=model_type, | |
guidance_type="uncond", | |
model_kwargs=extra_args, | |
) | |
order = min(3, len(timesteps) - 2) | |
uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=False, variant=variant) | |
x = uni_pc.sample(noise, timesteps=timesteps, skip_type="time_uniform", method="multistep", order=order, lower_order_final=True, callback=callback, disable_pbar=disable) | |
x /= ns.marginal_alpha(timesteps[-1]) | |
return x | |
def sample_unipc_bh2(model, noise, sigmas, extra_args=None, callback=None, disable=False): | |
return sample_unipc(model, noise, sigmas, extra_args, callback, disable, variant='bh2') |