Spaces:
Sleeping
Sleeping
#original code from https://github.com/genmoai/models under apache 2.0 license | |
#adapted to ComfyUI | |
from typing import Callable, List, Optional, Tuple, Union | |
from functools import partial | |
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange | |
from comfy.ldm.modules.attention import optimized_attention | |
import comfy.ops | |
ops = comfy.ops.disable_weight_init | |
# import mochi_preview.dit.joint_model.context_parallel as cp | |
# from mochi_preview.vae.cp_conv import cp_pass_frames, gather_all_frames | |
def cast_tuple(t, length=1): | |
return t if isinstance(t, tuple) else ((t,) * length) | |
class GroupNormSpatial(ops.GroupNorm): | |
""" | |
GroupNorm applied per-frame. | |
""" | |
def forward(self, x: torch.Tensor, *, chunk_size: int = 8): | |
B, C, T, H, W = x.shape | |
x = rearrange(x, "B C T H W -> (B T) C H W") | |
# Run group norm in chunks. | |
output = torch.empty_like(x) | |
for b in range(0, B * T, chunk_size): | |
output[b : b + chunk_size] = super().forward(x[b : b + chunk_size]) | |
return rearrange(output, "(B T) C H W -> B C T H W", B=B, T=T) | |
class PConv3d(ops.Conv3d): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
kernel_size: Union[int, Tuple[int, int, int]], | |
stride: Union[int, Tuple[int, int, int]], | |
causal: bool = True, | |
context_parallel: bool = True, | |
**kwargs, | |
): | |
self.causal = causal | |
self.context_parallel = context_parallel | |
kernel_size = cast_tuple(kernel_size, 3) | |
stride = cast_tuple(stride, 3) | |
height_pad = (kernel_size[1] - 1) // 2 | |
width_pad = (kernel_size[2] - 1) // 2 | |
super().__init__( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
dilation=(1, 1, 1), | |
padding=(0, height_pad, width_pad), | |
**kwargs, | |
) | |
def forward(self, x: torch.Tensor): | |
# Compute padding amounts. | |
context_size = self.kernel_size[0] - 1 | |
if self.causal: | |
pad_front = context_size | |
pad_back = 0 | |
else: | |
pad_front = context_size // 2 | |
pad_back = context_size - pad_front | |
# Apply padding. | |
assert self.padding_mode == "replicate" # DEBUG | |
mode = "constant" if self.padding_mode == "zeros" else self.padding_mode | |
x = F.pad(x, (0, 0, 0, 0, pad_front, pad_back), mode=mode) | |
return super().forward(x) | |
class Conv1x1(ops.Linear): | |
"""*1x1 Conv implemented with a linear layer.""" | |
def __init__(self, in_features: int, out_features: int, *args, **kwargs): | |
super().__init__(in_features, out_features, *args, **kwargs) | |
def forward(self, x: torch.Tensor): | |
"""Forward pass. | |
Args: | |
x: Input tensor. Shape: [B, C, *] or [B, *, C]. | |
Returns: | |
x: Output tensor. Shape: [B, C', *] or [B, *, C']. | |
""" | |
x = x.movedim(1, -1) | |
x = super().forward(x) | |
x = x.movedim(-1, 1) | |
return x | |
class DepthToSpaceTime(nn.Module): | |
def __init__( | |
self, | |
temporal_expansion: int, | |
spatial_expansion: int, | |
): | |
super().__init__() | |
self.temporal_expansion = temporal_expansion | |
self.spatial_expansion = spatial_expansion | |
# When printed, this module should show the temporal and spatial expansion factors. | |
def extra_repr(self): | |
return f"texp={self.temporal_expansion}, sexp={self.spatial_expansion}" | |
def forward(self, x: torch.Tensor): | |
"""Forward pass. | |
Args: | |
x: Input tensor. Shape: [B, C, T, H, W]. | |
Returns: | |
x: Rearranged tensor. Shape: [B, C/(st*s*s), T*st, H*s, W*s]. | |
""" | |
x = rearrange( | |
x, | |
"B (C st sh sw) T H W -> B C (T st) (H sh) (W sw)", | |
st=self.temporal_expansion, | |
sh=self.spatial_expansion, | |
sw=self.spatial_expansion, | |
) | |
# cp_rank, _ = cp.get_cp_rank_size() | |
if self.temporal_expansion > 1: # and cp_rank == 0: | |
# Drop the first self.temporal_expansion - 1 frames. | |
# This is because we always want the 3x3x3 conv filter to only apply | |
# to the first frame, and the first frame doesn't need to be repeated. | |
assert all(x.shape) | |
x = x[:, :, self.temporal_expansion - 1 :] | |
assert all(x.shape) | |
return x | |
def norm_fn( | |
in_channels: int, | |
affine: bool = True, | |
): | |
return GroupNormSpatial(affine=affine, num_groups=32, num_channels=in_channels) | |
class ResBlock(nn.Module): | |
"""Residual block that preserves the spatial dimensions.""" | |
def __init__( | |
self, | |
channels: int, | |
*, | |
affine: bool = True, | |
attn_block: Optional[nn.Module] = None, | |
causal: bool = True, | |
prune_bottleneck: bool = False, | |
padding_mode: str, | |
bias: bool = True, | |
): | |
super().__init__() | |
self.channels = channels | |
assert causal | |
self.stack = nn.Sequential( | |
norm_fn(channels, affine=affine), | |
nn.SiLU(inplace=True), | |
PConv3d( | |
in_channels=channels, | |
out_channels=channels // 2 if prune_bottleneck else channels, | |
kernel_size=(3, 3, 3), | |
stride=(1, 1, 1), | |
padding_mode=padding_mode, | |
bias=bias, | |
causal=causal, | |
), | |
norm_fn(channels, affine=affine), | |
nn.SiLU(inplace=True), | |
PConv3d( | |
in_channels=channels // 2 if prune_bottleneck else channels, | |
out_channels=channels, | |
kernel_size=(3, 3, 3), | |
stride=(1, 1, 1), | |
padding_mode=padding_mode, | |
bias=bias, | |
causal=causal, | |
), | |
) | |
self.attn_block = attn_block if attn_block else nn.Identity() | |
def forward(self, x: torch.Tensor): | |
"""Forward pass. | |
Args: | |
x: Input tensor. Shape: [B, C, T, H, W]. | |
""" | |
residual = x | |
x = self.stack(x) | |
x = x + residual | |
del residual | |
return self.attn_block(x) | |
class Attention(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
head_dim: int = 32, | |
qkv_bias: bool = False, | |
out_bias: bool = True, | |
qk_norm: bool = True, | |
) -> None: | |
super().__init__() | |
self.head_dim = head_dim | |
self.num_heads = dim // head_dim | |
self.qk_norm = qk_norm | |
self.qkv = nn.Linear(dim, 3 * dim, bias=qkv_bias) | |
self.out = nn.Linear(dim, dim, bias=out_bias) | |
def forward( | |
self, | |
x: torch.Tensor, | |
) -> torch.Tensor: | |
"""Compute temporal self-attention. | |
Args: | |
x: Input tensor. Shape: [B, C, T, H, W]. | |
chunk_size: Chunk size for large tensors. | |
Returns: | |
x: Output tensor. Shape: [B, C, T, H, W]. | |
""" | |
B, _, T, H, W = x.shape | |
if T == 1: | |
# No attention for single frame. | |
x = x.movedim(1, -1) # [B, C, T, H, W] -> [B, T, H, W, C] | |
qkv = self.qkv(x) | |
_, _, x = qkv.chunk(3, dim=-1) # Throw away queries and keys. | |
x = self.out(x) | |
return x.movedim(-1, 1) # [B, T, H, W, C] -> [B, C, T, H, W] | |
# 1D temporal attention. | |
x = rearrange(x, "B C t h w -> (B h w) t C") | |
qkv = self.qkv(x) | |
# Input: qkv with shape [B, t, 3 * num_heads * head_dim] | |
# Output: x with shape [B, num_heads, t, head_dim] | |
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, self.head_dim).transpose(1, 3).unbind(2) | |
if self.qk_norm: | |
q = F.normalize(q, p=2, dim=-1) | |
k = F.normalize(k, p=2, dim=-1) | |
x = optimized_attention(q, k, v, self.num_heads, skip_reshape=True) | |
assert x.size(0) == q.size(0) | |
x = self.out(x) | |
x = rearrange(x, "(B h w) t C -> B C t h w", B=B, h=H, w=W) | |
return x | |
class AttentionBlock(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
**attn_kwargs, | |
) -> None: | |
super().__init__() | |
self.norm = norm_fn(dim) | |
self.attn = Attention(dim, **attn_kwargs) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
return x + self.attn(self.norm(x)) | |
class CausalUpsampleBlock(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
num_res_blocks: int, | |
*, | |
temporal_expansion: int = 2, | |
spatial_expansion: int = 2, | |
**block_kwargs, | |
): | |
super().__init__() | |
blocks = [] | |
for _ in range(num_res_blocks): | |
blocks.append(block_fn(in_channels, **block_kwargs)) | |
self.blocks = nn.Sequential(*blocks) | |
self.temporal_expansion = temporal_expansion | |
self.spatial_expansion = spatial_expansion | |
# Change channels in the final convolution layer. | |
self.proj = Conv1x1( | |
in_channels, | |
out_channels * temporal_expansion * (spatial_expansion**2), | |
) | |
self.d2st = DepthToSpaceTime( | |
temporal_expansion=temporal_expansion, spatial_expansion=spatial_expansion | |
) | |
def forward(self, x): | |
x = self.blocks(x) | |
x = self.proj(x) | |
x = self.d2st(x) | |
return x | |
def block_fn(channels, *, affine: bool = True, has_attention: bool = False, **block_kwargs): | |
attn_block = AttentionBlock(channels) if has_attention else None | |
return ResBlock(channels, affine=affine, attn_block=attn_block, **block_kwargs) | |
class DownsampleBlock(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
num_res_blocks, | |
*, | |
temporal_reduction=2, | |
spatial_reduction=2, | |
**block_kwargs, | |
): | |
""" | |
Downsample block for the VAE encoder. | |
Args: | |
in_channels: Number of input channels. | |
out_channels: Number of output channels. | |
num_res_blocks: Number of residual blocks. | |
temporal_reduction: Temporal reduction factor. | |
spatial_reduction: Spatial reduction factor. | |
""" | |
super().__init__() | |
layers = [] | |
# Change the channel count in the strided convolution. | |
# This lets the ResBlock have uniform channel count, | |
# as in ConvNeXt. | |
assert in_channels != out_channels | |
layers.append( | |
PConv3d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=(temporal_reduction, spatial_reduction, spatial_reduction), | |
stride=(temporal_reduction, spatial_reduction, spatial_reduction), | |
# First layer in each block always uses replicate padding | |
padding_mode="replicate", | |
bias=block_kwargs["bias"], | |
) | |
) | |
for _ in range(num_res_blocks): | |
layers.append(block_fn(out_channels, **block_kwargs)) | |
self.layers = nn.Sequential(*layers) | |
def forward(self, x): | |
return self.layers(x) | |
def add_fourier_features(inputs: torch.Tensor, start=6, stop=8, step=1): | |
num_freqs = (stop - start) // step | |
assert inputs.ndim == 5 | |
C = inputs.size(1) | |
# Create Base 2 Fourier features. | |
freqs = torch.arange(start, stop, step, dtype=inputs.dtype, device=inputs.device) | |
assert num_freqs == len(freqs) | |
w = torch.pow(2.0, freqs) * (2 * torch.pi) # [num_freqs] | |
C = inputs.shape[1] | |
w = w.repeat(C)[None, :, None, None, None] # [1, C * num_freqs, 1, 1, 1] | |
# Interleaved repeat of input channels to match w. | |
h = inputs.repeat_interleave(num_freqs, dim=1) # [B, C * num_freqs, T, H, W] | |
# Scale channels by frequency. | |
h = w * h | |
return torch.cat( | |
[ | |
inputs, | |
torch.sin(h), | |
torch.cos(h), | |
], | |
dim=1, | |
) | |
class FourierFeatures(nn.Module): | |
def __init__(self, start: int = 6, stop: int = 8, step: int = 1): | |
super().__init__() | |
self.start = start | |
self.stop = stop | |
self.step = step | |
def forward(self, inputs): | |
"""Add Fourier features to inputs. | |
Args: | |
inputs: Input tensor. Shape: [B, C, T, H, W] | |
Returns: | |
h: Output tensor. Shape: [B, (1 + 2 * num_freqs) * C, T, H, W] | |
""" | |
return add_fourier_features(inputs, self.start, self.stop, self.step) | |
class Decoder(nn.Module): | |
def __init__( | |
self, | |
*, | |
out_channels: int = 3, | |
latent_dim: int, | |
base_channels: int, | |
channel_multipliers: List[int], | |
num_res_blocks: List[int], | |
temporal_expansions: Optional[List[int]] = None, | |
spatial_expansions: Optional[List[int]] = None, | |
has_attention: List[bool], | |
output_norm: bool = True, | |
nonlinearity: str = "silu", | |
output_nonlinearity: str = "silu", | |
causal: bool = True, | |
**block_kwargs, | |
): | |
super().__init__() | |
self.input_channels = latent_dim | |
self.base_channels = base_channels | |
self.channel_multipliers = channel_multipliers | |
self.num_res_blocks = num_res_blocks | |
self.output_nonlinearity = output_nonlinearity | |
assert nonlinearity == "silu" | |
assert causal | |
ch = [mult * base_channels for mult in channel_multipliers] | |
self.num_up_blocks = len(ch) - 1 | |
assert len(num_res_blocks) == self.num_up_blocks + 2 | |
blocks = [] | |
first_block = [ | |
ops.Conv3d(latent_dim, ch[-1], kernel_size=(1, 1, 1)) | |
] # Input layer. | |
# First set of blocks preserve channel count. | |
for _ in range(num_res_blocks[-1]): | |
first_block.append( | |
block_fn( | |
ch[-1], | |
has_attention=has_attention[-1], | |
causal=causal, | |
**block_kwargs, | |
) | |
) | |
blocks.append(nn.Sequential(*first_block)) | |
assert len(temporal_expansions) == len(spatial_expansions) == self.num_up_blocks | |
assert len(num_res_blocks) == len(has_attention) == self.num_up_blocks + 2 | |
upsample_block_fn = CausalUpsampleBlock | |
for i in range(self.num_up_blocks): | |
block = upsample_block_fn( | |
ch[-i - 1], | |
ch[-i - 2], | |
num_res_blocks=num_res_blocks[-i - 2], | |
has_attention=has_attention[-i - 2], | |
temporal_expansion=temporal_expansions[-i - 1], | |
spatial_expansion=spatial_expansions[-i - 1], | |
causal=causal, | |
**block_kwargs, | |
) | |
blocks.append(block) | |
assert not output_norm | |
# Last block. Preserve channel count. | |
last_block = [] | |
for _ in range(num_res_blocks[0]): | |
last_block.append( | |
block_fn( | |
ch[0], has_attention=has_attention[0], causal=causal, **block_kwargs | |
) | |
) | |
blocks.append(nn.Sequential(*last_block)) | |
self.blocks = nn.ModuleList(blocks) | |
self.output_proj = Conv1x1(ch[0], out_channels) | |
def forward(self, x): | |
"""Forward pass. | |
Args: | |
x: Latent tensor. Shape: [B, input_channels, t, h, w]. Scaled [-1, 1]. | |
Returns: | |
x: Reconstructed video tensor. Shape: [B, C, T, H, W]. Scaled to [-1, 1]. | |
T + 1 = (t - 1) * 4. | |
H = h * 16, W = w * 16. | |
""" | |
for block in self.blocks: | |
x = block(x) | |
if self.output_nonlinearity == "silu": | |
x = F.silu(x, inplace=not self.training) | |
else: | |
assert ( | |
not self.output_nonlinearity | |
) # StyleGAN3 omits the to-RGB nonlinearity. | |
return self.output_proj(x).contiguous() | |
class LatentDistribution: | |
def __init__(self, mean: torch.Tensor, logvar: torch.Tensor): | |
"""Initialize latent distribution. | |
Args: | |
mean: Mean of the distribution. Shape: [B, C, T, H, W]. | |
logvar: Logarithm of variance of the distribution. Shape: [B, C, T, H, W]. | |
""" | |
assert mean.shape == logvar.shape | |
self.mean = mean | |
self.logvar = logvar | |
def sample(self, temperature=1.0, generator: torch.Generator = None, noise=None): | |
if temperature == 0.0: | |
return self.mean | |
if noise is None: | |
noise = torch.randn(self.mean.shape, device=self.mean.device, dtype=self.mean.dtype, generator=generator) | |
else: | |
assert noise.device == self.mean.device | |
noise = noise.to(self.mean.dtype) | |
if temperature != 1.0: | |
raise NotImplementedError(f"Temperature {temperature} is not supported.") | |
# Just Gaussian sample with no scaling of variance. | |
return noise * torch.exp(self.logvar * 0.5) + self.mean | |
def mode(self): | |
return self.mean | |
class Encoder(nn.Module): | |
def __init__( | |
self, | |
*, | |
in_channels: int, | |
base_channels: int, | |
channel_multipliers: List[int], | |
num_res_blocks: List[int], | |
latent_dim: int, | |
temporal_reductions: List[int], | |
spatial_reductions: List[int], | |
prune_bottlenecks: List[bool], | |
has_attentions: List[bool], | |
affine: bool = True, | |
bias: bool = True, | |
input_is_conv_1x1: bool = False, | |
padding_mode: str, | |
): | |
super().__init__() | |
self.temporal_reductions = temporal_reductions | |
self.spatial_reductions = spatial_reductions | |
self.base_channels = base_channels | |
self.channel_multipliers = channel_multipliers | |
self.num_res_blocks = num_res_blocks | |
self.latent_dim = latent_dim | |
self.fourier_features = FourierFeatures() | |
ch = [mult * base_channels for mult in channel_multipliers] | |
num_down_blocks = len(ch) - 1 | |
assert len(num_res_blocks) == num_down_blocks + 2 | |
layers = ( | |
[ops.Conv3d(in_channels, ch[0], kernel_size=(1, 1, 1), bias=True)] | |
if not input_is_conv_1x1 | |
else [Conv1x1(in_channels, ch[0])] | |
) | |
assert len(prune_bottlenecks) == num_down_blocks + 2 | |
assert len(has_attentions) == num_down_blocks + 2 | |
block = partial(block_fn, padding_mode=padding_mode, affine=affine, bias=bias) | |
for _ in range(num_res_blocks[0]): | |
layers.append(block(ch[0], has_attention=has_attentions[0], prune_bottleneck=prune_bottlenecks[0])) | |
prune_bottlenecks = prune_bottlenecks[1:] | |
has_attentions = has_attentions[1:] | |
assert len(temporal_reductions) == len(spatial_reductions) == len(ch) - 1 | |
for i in range(num_down_blocks): | |
layer = DownsampleBlock( | |
ch[i], | |
ch[i + 1], | |
num_res_blocks=num_res_blocks[i + 1], | |
temporal_reduction=temporal_reductions[i], | |
spatial_reduction=spatial_reductions[i], | |
prune_bottleneck=prune_bottlenecks[i], | |
has_attention=has_attentions[i], | |
affine=affine, | |
bias=bias, | |
padding_mode=padding_mode, | |
) | |
layers.append(layer) | |
# Additional blocks. | |
for _ in range(num_res_blocks[-1]): | |
layers.append(block(ch[-1], has_attention=has_attentions[-1], prune_bottleneck=prune_bottlenecks[-1])) | |
self.layers = nn.Sequential(*layers) | |
# Output layers. | |
self.output_norm = norm_fn(ch[-1]) | |
self.output_proj = Conv1x1(ch[-1], 2 * latent_dim, bias=False) | |
def temporal_downsample(self): | |
return math.prod(self.temporal_reductions) | |
def spatial_downsample(self): | |
return math.prod(self.spatial_reductions) | |
def forward(self, x) -> LatentDistribution: | |
"""Forward pass. | |
Args: | |
x: Input video tensor. Shape: [B, C, T, H, W]. Scaled to [-1, 1] | |
Returns: | |
means: Latent tensor. Shape: [B, latent_dim, t, h, w]. Scaled [-1, 1]. | |
h = H // 8, w = W // 8, t - 1 = (T - 1) // 6 | |
logvar: Shape: [B, latent_dim, t, h, w]. | |
""" | |
assert x.ndim == 5, f"Expected 5D input, got {x.shape}" | |
x = self.fourier_features(x) | |
x = self.layers(x) | |
x = self.output_norm(x) | |
x = F.silu(x, inplace=True) | |
x = self.output_proj(x) | |
means, logvar = torch.chunk(x, 2, dim=1) | |
assert means.ndim == 5 | |
assert logvar.shape == means.shape | |
assert means.size(1) == self.latent_dim | |
return LatentDistribution(means, logvar) | |
class VideoVAE(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.encoder = Encoder( | |
in_channels=15, | |
base_channels=64, | |
channel_multipliers=[1, 2, 4, 6], | |
num_res_blocks=[3, 3, 4, 6, 3], | |
latent_dim=12, | |
temporal_reductions=[1, 2, 3], | |
spatial_reductions=[2, 2, 2], | |
prune_bottlenecks=[False, False, False, False, False], | |
has_attentions=[False, True, True, True, True], | |
affine=True, | |
bias=True, | |
input_is_conv_1x1=True, | |
padding_mode="replicate" | |
) | |
self.decoder = Decoder( | |
out_channels=3, | |
base_channels=128, | |
channel_multipliers=[1, 2, 4, 6], | |
temporal_expansions=[1, 2, 3], | |
spatial_expansions=[2, 2, 2], | |
num_res_blocks=[3, 3, 4, 6, 3], | |
latent_dim=12, | |
has_attention=[False, False, False, False, False], | |
padding_mode="replicate", | |
output_norm=False, | |
nonlinearity="silu", | |
output_nonlinearity="silu", | |
causal=True, | |
) | |
def encode(self, x): | |
return self.encoder(x).mode() | |
def decode(self, x): | |
return self.decoder(x) | |