Spaces:
Sleeping
Sleeping
import math | |
import torch | |
import torch.nn.functional as F | |
from torch import nn, einsum | |
from einops import rearrange, repeat | |
from typing import Optional | |
import logging | |
from .diffusionmodules.util import AlphaBlender, timestep_embedding | |
from .sub_quadratic_attention import efficient_dot_product_attention | |
from comfy import model_management | |
if model_management.xformers_enabled(): | |
import xformers | |
import xformers.ops | |
from comfy.cli_args import args | |
import comfy.ops | |
ops = comfy.ops.disable_weight_init | |
FORCE_UPCAST_ATTENTION_DTYPE = model_management.force_upcast_attention_dtype() | |
def get_attn_precision(attn_precision): | |
if args.dont_upcast_attention: | |
return None | |
if FORCE_UPCAST_ATTENTION_DTYPE is not None: | |
return FORCE_UPCAST_ATTENTION_DTYPE | |
return attn_precision | |
def exists(val): | |
return val is not None | |
def uniq(arr): | |
return{el: True for el in arr}.keys() | |
def default(val, d): | |
if exists(val): | |
return val | |
return d | |
def max_neg_value(t): | |
return -torch.finfo(t.dtype).max | |
def init_(tensor): | |
dim = tensor.shape[-1] | |
std = 1 / math.sqrt(dim) | |
tensor.uniform_(-std, std) | |
return tensor | |
# feedforward | |
class GEGLU(nn.Module): | |
def __init__(self, dim_in, dim_out, dtype=None, device=None, operations=ops): | |
super().__init__() | |
self.proj = operations.Linear(dim_in, dim_out * 2, dtype=dtype, device=device) | |
def forward(self, x): | |
x, gate = self.proj(x).chunk(2, dim=-1) | |
return x * F.gelu(gate) | |
class FeedForward(nn.Module): | |
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0., dtype=None, device=None, operations=ops): | |
super().__init__() | |
inner_dim = int(dim * mult) | |
dim_out = default(dim_out, dim) | |
project_in = nn.Sequential( | |
operations.Linear(dim, inner_dim, dtype=dtype, device=device), | |
nn.GELU() | |
) if not glu else GEGLU(dim, inner_dim, dtype=dtype, device=device, operations=operations) | |
self.net = nn.Sequential( | |
project_in, | |
nn.Dropout(dropout), | |
operations.Linear(inner_dim, dim_out, dtype=dtype, device=device) | |
) | |
def forward(self, x): | |
return self.net(x) | |
def Normalize(in_channels, dtype=None, device=None): | |
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device) | |
def attention_basic(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False): | |
attn_precision = get_attn_precision(attn_precision) | |
if skip_reshape: | |
b, _, _, dim_head = q.shape | |
else: | |
b, _, dim_head = q.shape | |
dim_head //= heads | |
scale = dim_head ** -0.5 | |
h = heads | |
if skip_reshape: | |
q, k, v = map( | |
lambda t: t.reshape(b * heads, -1, dim_head), | |
(q, k, v), | |
) | |
else: | |
q, k, v = map( | |
lambda t: t.unsqueeze(3) | |
.reshape(b, -1, heads, dim_head) | |
.permute(0, 2, 1, 3) | |
.reshape(b * heads, -1, dim_head) | |
.contiguous(), | |
(q, k, v), | |
) | |
# force cast to fp32 to avoid overflowing | |
if attn_precision == torch.float32: | |
sim = einsum('b i d, b j d -> b i j', q.float(), k.float()) * scale | |
else: | |
sim = einsum('b i d, b j d -> b i j', q, k) * scale | |
del q, k | |
if exists(mask): | |
if mask.dtype == torch.bool: | |
mask = rearrange(mask, 'b ... -> b (...)') #TODO: check if this bool part matches pytorch attention | |
max_neg_value = -torch.finfo(sim.dtype).max | |
mask = repeat(mask, 'b j -> (b h) () j', h=h) | |
sim.masked_fill_(~mask, max_neg_value) | |
else: | |
if len(mask.shape) == 2: | |
bs = 1 | |
else: | |
bs = mask.shape[0] | |
mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1]) | |
sim.add_(mask) | |
# attention, what we cannot get enough of | |
sim = sim.softmax(dim=-1) | |
out = einsum('b i j, b j d -> b i d', sim.to(v.dtype), v) | |
out = ( | |
out.unsqueeze(0) | |
.reshape(b, heads, -1, dim_head) | |
.permute(0, 2, 1, 3) | |
.reshape(b, -1, heads * dim_head) | |
) | |
return out | |
def attention_sub_quad(query, key, value, heads, mask=None, attn_precision=None, skip_reshape=False): | |
attn_precision = get_attn_precision(attn_precision) | |
if skip_reshape: | |
b, _, _, dim_head = query.shape | |
else: | |
b, _, dim_head = query.shape | |
dim_head //= heads | |
scale = dim_head ** -0.5 | |
if skip_reshape: | |
query = query.reshape(b * heads, -1, dim_head) | |
value = value.reshape(b * heads, -1, dim_head) | |
key = key.reshape(b * heads, -1, dim_head).movedim(1, 2) | |
else: | |
query = query.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head) | |
value = value.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head) | |
key = key.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 3, 1).reshape(b * heads, dim_head, -1) | |
dtype = query.dtype | |
upcast_attention = attn_precision == torch.float32 and query.dtype != torch.float32 | |
if upcast_attention: | |
bytes_per_token = torch.finfo(torch.float32).bits//8 | |
else: | |
bytes_per_token = torch.finfo(query.dtype).bits//8 | |
batch_x_heads, q_tokens, _ = query.shape | |
_, _, k_tokens = key.shape | |
qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens | |
mem_free_total, mem_free_torch = model_management.get_free_memory(query.device, True) | |
kv_chunk_size_min = None | |
kv_chunk_size = None | |
query_chunk_size = None | |
for x in [4096, 2048, 1024, 512, 256]: | |
count = mem_free_total / (batch_x_heads * bytes_per_token * x * 4.0) | |
if count >= k_tokens: | |
kv_chunk_size = k_tokens | |
query_chunk_size = x | |
break | |
if query_chunk_size is None: | |
query_chunk_size = 512 | |
if mask is not None: | |
if len(mask.shape) == 2: | |
bs = 1 | |
else: | |
bs = mask.shape[0] | |
mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1]) | |
hidden_states = efficient_dot_product_attention( | |
query, | |
key, | |
value, | |
query_chunk_size=query_chunk_size, | |
kv_chunk_size=kv_chunk_size, | |
kv_chunk_size_min=kv_chunk_size_min, | |
use_checkpoint=False, | |
upcast_attention=upcast_attention, | |
mask=mask, | |
) | |
hidden_states = hidden_states.to(dtype) | |
hidden_states = hidden_states.unflatten(0, (-1, heads)).transpose(1,2).flatten(start_dim=2) | |
return hidden_states | |
def attention_split(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False): | |
attn_precision = get_attn_precision(attn_precision) | |
if skip_reshape: | |
b, _, _, dim_head = q.shape | |
else: | |
b, _, dim_head = q.shape | |
dim_head //= heads | |
scale = dim_head ** -0.5 | |
h = heads | |
if skip_reshape: | |
q, k, v = map( | |
lambda t: t.reshape(b * heads, -1, dim_head), | |
(q, k, v), | |
) | |
else: | |
q, k, v = map( | |
lambda t: t.unsqueeze(3) | |
.reshape(b, -1, heads, dim_head) | |
.permute(0, 2, 1, 3) | |
.reshape(b * heads, -1, dim_head) | |
.contiguous(), | |
(q, k, v), | |
) | |
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) | |
mem_free_total = model_management.get_free_memory(q.device) | |
if attn_precision == torch.float32: | |
element_size = 4 | |
upcast = True | |
else: | |
element_size = q.element_size() | |
upcast = False | |
gb = 1024 ** 3 | |
tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * element_size | |
modifier = 3 | |
mem_required = tensor_size * modifier | |
steps = 1 | |
if mem_required > mem_free_total: | |
steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2))) | |
# print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB " | |
# f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}") | |
if steps > 64: | |
max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64 | |
raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). ' | |
f'Need: {mem_required/64/gb:0.1f}GB free, Have:{mem_free_total/gb:0.1f}GB free') | |
if mask is not None: | |
if len(mask.shape) == 2: | |
bs = 1 | |
else: | |
bs = mask.shape[0] | |
mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1]) | |
# print("steps", steps, mem_required, mem_free_total, modifier, q.element_size(), tensor_size) | |
first_op_done = False | |
cleared_cache = False | |
while True: | |
try: | |
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] | |
for i in range(0, q.shape[1], slice_size): | |
end = i + slice_size | |
if upcast: | |
with torch.autocast(enabled=False, device_type = 'cuda'): | |
s1 = einsum('b i d, b j d -> b i j', q[:, i:end].float(), k.float()) * scale | |
else: | |
s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * scale | |
if mask is not None: | |
if len(mask.shape) == 2: | |
s1 += mask[i:end] | |
else: | |
if mask.shape[1] == 1: | |
s1 += mask | |
else: | |
s1 += mask[:, i:end] | |
s2 = s1.softmax(dim=-1).to(v.dtype) | |
del s1 | |
first_op_done = True | |
r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v) | |
del s2 | |
break | |
except model_management.OOM_EXCEPTION as e: | |
if first_op_done == False: | |
model_management.soft_empty_cache(True) | |
if cleared_cache == False: | |
cleared_cache = True | |
logging.warning("out of memory error, emptying cache and trying again") | |
continue | |
steps *= 2 | |
if steps > 64: | |
raise e | |
logging.warning("out of memory error, increasing steps and trying again {}".format(steps)) | |
else: | |
raise e | |
del q, k, v | |
r1 = ( | |
r1.unsqueeze(0) | |
.reshape(b, heads, -1, dim_head) | |
.permute(0, 2, 1, 3) | |
.reshape(b, -1, heads * dim_head) | |
) | |
return r1 | |
BROKEN_XFORMERS = False | |
try: | |
x_vers = xformers.__version__ | |
# XFormers bug confirmed on all versions from 0.0.21 to 0.0.26 (q with bs bigger than 65535 gives CUDA error) | |
BROKEN_XFORMERS = x_vers.startswith("0.0.2") and not x_vers.startswith("0.0.20") | |
except: | |
pass | |
def attention_xformers(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False): | |
if skip_reshape: | |
b, _, _, dim_head = q.shape | |
else: | |
b, _, dim_head = q.shape | |
dim_head //= heads | |
disabled_xformers = False | |
if BROKEN_XFORMERS: | |
if b * heads > 65535: | |
disabled_xformers = True | |
if not disabled_xformers: | |
if torch.jit.is_tracing() or torch.jit.is_scripting(): | |
disabled_xformers = True | |
if disabled_xformers: | |
return attention_pytorch(q, k, v, heads, mask, skip_reshape=skip_reshape) | |
if skip_reshape: | |
q, k, v = map( | |
lambda t: t.reshape(b * heads, -1, dim_head), | |
(q, k, v), | |
) | |
else: | |
q, k, v = map( | |
lambda t: t.reshape(b, -1, heads, dim_head), | |
(q, k, v), | |
) | |
if mask is not None: | |
pad = 8 - mask.shape[-1] % 8 | |
mask_out = torch.empty([q.shape[0], q.shape[2], q.shape[1], mask.shape[-1] + pad], dtype=q.dtype, device=q.device) | |
mask_out[..., :mask.shape[-1]] = mask | |
mask = mask_out[..., :mask.shape[-1]] | |
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=mask) | |
if skip_reshape: | |
out = ( | |
out.unsqueeze(0) | |
.reshape(b, heads, -1, dim_head) | |
.permute(0, 2, 1, 3) | |
.reshape(b, -1, heads * dim_head) | |
) | |
else: | |
out = ( | |
out.reshape(b, -1, heads * dim_head) | |
) | |
return out | |
if model_management.is_nvidia(): #pytorch 2.3 and up seem to have this issue. | |
SDP_BATCH_LIMIT = 2**15 | |
else: | |
#TODO: other GPUs ? | |
SDP_BATCH_LIMIT = 2**31 | |
def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False): | |
if skip_reshape: | |
b, _, _, dim_head = q.shape | |
else: | |
b, _, dim_head = q.shape | |
dim_head //= heads | |
q, k, v = map( | |
lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2), | |
(q, k, v), | |
) | |
if SDP_BATCH_LIMIT >= q.shape[0]: | |
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False) | |
out = ( | |
out.transpose(1, 2).reshape(b, -1, heads * dim_head) | |
) | |
else: | |
out = torch.empty((q.shape[0], q.shape[2], heads * dim_head), dtype=q.dtype, layout=q.layout, device=q.device) | |
for i in range(0, q.shape[0], SDP_BATCH_LIMIT): | |
out[i : i + SDP_BATCH_LIMIT] = torch.nn.functional.scaled_dot_product_attention(q[i : i + SDP_BATCH_LIMIT], k[i : i + SDP_BATCH_LIMIT], v[i : i + SDP_BATCH_LIMIT], attn_mask=mask, dropout_p=0.0, is_causal=False).transpose(1, 2).reshape(-1, q.shape[2], heads * dim_head) | |
return out | |
optimized_attention = attention_basic | |
if model_management.xformers_enabled(): | |
logging.info("Using xformers cross attention") | |
optimized_attention = attention_xformers | |
elif model_management.pytorch_attention_enabled(): | |
logging.info("Using pytorch cross attention") | |
optimized_attention = attention_pytorch | |
else: | |
if args.use_split_cross_attention: | |
logging.info("Using split optimization for cross attention") | |
optimized_attention = attention_split | |
else: | |
logging.info("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention") | |
optimized_attention = attention_sub_quad | |
optimized_attention_masked = optimized_attention | |
def optimized_attention_for_device(device, mask=False, small_input=False): | |
if small_input: | |
if model_management.pytorch_attention_enabled(): | |
return attention_pytorch #TODO: need to confirm but this is probably slightly faster for small inputs in all cases | |
else: | |
return attention_basic | |
if device == torch.device("cpu"): | |
return attention_sub_quad | |
if mask: | |
return optimized_attention_masked | |
return optimized_attention | |
class CrossAttention(nn.Module): | |
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., attn_precision=None, dtype=None, device=None, operations=ops): | |
super().__init__() | |
inner_dim = dim_head * heads | |
context_dim = default(context_dim, query_dim) | |
self.attn_precision = attn_precision | |
self.heads = heads | |
self.dim_head = dim_head | |
self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device) | |
self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device) | |
self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device) | |
self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout)) | |
def forward(self, x, context=None, value=None, mask=None): | |
q = self.to_q(x) | |
context = default(context, x) | |
k = self.to_k(context) | |
if value is not None: | |
v = self.to_v(value) | |
del value | |
else: | |
v = self.to_v(context) | |
if mask is None: | |
out = optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision) | |
else: | |
out = optimized_attention_masked(q, k, v, self.heads, mask, attn_precision=self.attn_precision) | |
return self.to_out(out) | |
class BasicTransformerBlock(nn.Module): | |
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, ff_in=False, inner_dim=None, | |
disable_self_attn=False, disable_temporal_crossattention=False, switch_temporal_ca_to_sa=False, attn_precision=None, dtype=None, device=None, operations=ops): | |
super().__init__() | |
self.ff_in = ff_in or inner_dim is not None | |
if inner_dim is None: | |
inner_dim = dim | |
self.is_res = inner_dim == dim | |
self.attn_precision = attn_precision | |
if self.ff_in: | |
self.norm_in = operations.LayerNorm(dim, dtype=dtype, device=device) | |
self.ff_in = FeedForward(dim, dim_out=inner_dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations) | |
self.disable_self_attn = disable_self_attn | |
self.attn1 = CrossAttention(query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout, | |
context_dim=context_dim if self.disable_self_attn else None, attn_precision=self.attn_precision, dtype=dtype, device=device, operations=operations) # is a self-attention if not self.disable_self_attn | |
self.ff = FeedForward(inner_dim, dim_out=dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations) | |
if disable_temporal_crossattention: | |
if switch_temporal_ca_to_sa: | |
raise ValueError | |
else: | |
self.attn2 = None | |
else: | |
context_dim_attn2 = None | |
if not switch_temporal_ca_to_sa: | |
context_dim_attn2 = context_dim | |
self.attn2 = CrossAttention(query_dim=inner_dim, context_dim=context_dim_attn2, | |
heads=n_heads, dim_head=d_head, dropout=dropout, attn_precision=self.attn_precision, dtype=dtype, device=device, operations=operations) # is self-attn if context is none | |
self.norm2 = operations.LayerNorm(inner_dim, dtype=dtype, device=device) | |
self.norm1 = operations.LayerNorm(inner_dim, dtype=dtype, device=device) | |
self.norm3 = operations.LayerNorm(inner_dim, dtype=dtype, device=device) | |
self.n_heads = n_heads | |
self.d_head = d_head | |
self.switch_temporal_ca_to_sa = switch_temporal_ca_to_sa | |
def forward(self, x, context=None, transformer_options={}): | |
extra_options = {} | |
block = transformer_options.get("block", None) | |
block_index = transformer_options.get("block_index", 0) | |
transformer_patches = {} | |
transformer_patches_replace = {} | |
for k in transformer_options: | |
if k == "patches": | |
transformer_patches = transformer_options[k] | |
elif k == "patches_replace": | |
transformer_patches_replace = transformer_options[k] | |
else: | |
extra_options[k] = transformer_options[k] | |
extra_options["n_heads"] = self.n_heads | |
extra_options["dim_head"] = self.d_head | |
extra_options["attn_precision"] = self.attn_precision | |
if self.ff_in: | |
x_skip = x | |
x = self.ff_in(self.norm_in(x)) | |
if self.is_res: | |
x += x_skip | |
n = self.norm1(x) | |
if self.disable_self_attn: | |
context_attn1 = context | |
else: | |
context_attn1 = None | |
value_attn1 = None | |
if "attn1_patch" in transformer_patches: | |
patch = transformer_patches["attn1_patch"] | |
if context_attn1 is None: | |
context_attn1 = n | |
value_attn1 = context_attn1 | |
for p in patch: | |
n, context_attn1, value_attn1 = p(n, context_attn1, value_attn1, extra_options) | |
if block is not None: | |
transformer_block = (block[0], block[1], block_index) | |
else: | |
transformer_block = None | |
attn1_replace_patch = transformer_patches_replace.get("attn1", {}) | |
block_attn1 = transformer_block | |
if block_attn1 not in attn1_replace_patch: | |
block_attn1 = block | |
if block_attn1 in attn1_replace_patch: | |
if context_attn1 is None: | |
context_attn1 = n | |
value_attn1 = n | |
n = self.attn1.to_q(n) | |
context_attn1 = self.attn1.to_k(context_attn1) | |
value_attn1 = self.attn1.to_v(value_attn1) | |
n = attn1_replace_patch[block_attn1](n, context_attn1, value_attn1, extra_options) | |
n = self.attn1.to_out(n) | |
else: | |
n = self.attn1(n, context=context_attn1, value=value_attn1) | |
if "attn1_output_patch" in transformer_patches: | |
patch = transformer_patches["attn1_output_patch"] | |
for p in patch: | |
n = p(n, extra_options) | |
x += n | |
if "middle_patch" in transformer_patches: | |
patch = transformer_patches["middle_patch"] | |
for p in patch: | |
x = p(x, extra_options) | |
if self.attn2 is not None: | |
n = self.norm2(x) | |
if self.switch_temporal_ca_to_sa: | |
context_attn2 = n | |
else: | |
context_attn2 = context | |
value_attn2 = None | |
if "attn2_patch" in transformer_patches: | |
patch = transformer_patches["attn2_patch"] | |
value_attn2 = context_attn2 | |
for p in patch: | |
n, context_attn2, value_attn2 = p(n, context_attn2, value_attn2, extra_options) | |
attn2_replace_patch = transformer_patches_replace.get("attn2", {}) | |
block_attn2 = transformer_block | |
if block_attn2 not in attn2_replace_patch: | |
block_attn2 = block | |
if block_attn2 in attn2_replace_patch: | |
if value_attn2 is None: | |
value_attn2 = context_attn2 | |
n = self.attn2.to_q(n) | |
context_attn2 = self.attn2.to_k(context_attn2) | |
value_attn2 = self.attn2.to_v(value_attn2) | |
n = attn2_replace_patch[block_attn2](n, context_attn2, value_attn2, extra_options) | |
n = self.attn2.to_out(n) | |
else: | |
n = self.attn2(n, context=context_attn2, value=value_attn2) | |
if "attn2_output_patch" in transformer_patches: | |
patch = transformer_patches["attn2_output_patch"] | |
for p in patch: | |
n = p(n, extra_options) | |
x += n | |
if self.is_res: | |
x_skip = x | |
x = self.ff(self.norm3(x)) | |
if self.is_res: | |
x += x_skip | |
return x | |
class SpatialTransformer(nn.Module): | |
""" | |
Transformer block for image-like data. | |
First, project the input (aka embedding) | |
and reshape to b, t, d. | |
Then apply standard transformer action. | |
Finally, reshape to image | |
NEW: use_linear for more efficiency instead of the 1x1 convs | |
""" | |
def __init__(self, in_channels, n_heads, d_head, | |
depth=1, dropout=0., context_dim=None, | |
disable_self_attn=False, use_linear=False, | |
use_checkpoint=True, attn_precision=None, dtype=None, device=None, operations=ops): | |
super().__init__() | |
if exists(context_dim) and not isinstance(context_dim, list): | |
context_dim = [context_dim] * depth | |
self.in_channels = in_channels | |
inner_dim = n_heads * d_head | |
self.norm = operations.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device) | |
if not use_linear: | |
self.proj_in = operations.Conv2d(in_channels, | |
inner_dim, | |
kernel_size=1, | |
stride=1, | |
padding=0, dtype=dtype, device=device) | |
else: | |
self.proj_in = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device) | |
self.transformer_blocks = nn.ModuleList( | |
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d], | |
disable_self_attn=disable_self_attn, checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=dtype, device=device, operations=operations) | |
for d in range(depth)] | |
) | |
if not use_linear: | |
self.proj_out = operations.Conv2d(inner_dim,in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0, dtype=dtype, device=device) | |
else: | |
self.proj_out = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device) | |
self.use_linear = use_linear | |
def forward(self, x, context=None, transformer_options={}): | |
# note: if no context is given, cross-attention defaults to self-attention | |
if not isinstance(context, list): | |
context = [context] * len(self.transformer_blocks) | |
b, c, h, w = x.shape | |
x_in = x | |
x = self.norm(x) | |
if not self.use_linear: | |
x = self.proj_in(x) | |
x = x.movedim(1, 3).flatten(1, 2).contiguous() | |
if self.use_linear: | |
x = self.proj_in(x) | |
for i, block in enumerate(self.transformer_blocks): | |
transformer_options["block_index"] = i | |
x = block(x, context=context[i], transformer_options=transformer_options) | |
if self.use_linear: | |
x = self.proj_out(x) | |
x = x.reshape(x.shape[0], h, w, x.shape[-1]).movedim(3, 1).contiguous() | |
if not self.use_linear: | |
x = self.proj_out(x) | |
return x + x_in | |
class SpatialVideoTransformer(SpatialTransformer): | |
def __init__( | |
self, | |
in_channels, | |
n_heads, | |
d_head, | |
depth=1, | |
dropout=0.0, | |
use_linear=False, | |
context_dim=None, | |
use_spatial_context=False, | |
timesteps=None, | |
merge_strategy: str = "fixed", | |
merge_factor: float = 0.5, | |
time_context_dim=None, | |
ff_in=False, | |
checkpoint=False, | |
time_depth=1, | |
disable_self_attn=False, | |
disable_temporal_crossattention=False, | |
max_time_embed_period: int = 10000, | |
attn_precision=None, | |
dtype=None, device=None, operations=ops | |
): | |
super().__init__( | |
in_channels, | |
n_heads, | |
d_head, | |
depth=depth, | |
dropout=dropout, | |
use_checkpoint=checkpoint, | |
context_dim=context_dim, | |
use_linear=use_linear, | |
disable_self_attn=disable_self_attn, | |
attn_precision=attn_precision, | |
dtype=dtype, device=device, operations=operations | |
) | |
self.time_depth = time_depth | |
self.depth = depth | |
self.max_time_embed_period = max_time_embed_period | |
time_mix_d_head = d_head | |
n_time_mix_heads = n_heads | |
time_mix_inner_dim = int(time_mix_d_head * n_time_mix_heads) | |
inner_dim = n_heads * d_head | |
if use_spatial_context: | |
time_context_dim = context_dim | |
self.time_stack = nn.ModuleList( | |
[ | |
BasicTransformerBlock( | |
inner_dim, | |
n_time_mix_heads, | |
time_mix_d_head, | |
dropout=dropout, | |
context_dim=time_context_dim, | |
# timesteps=timesteps, | |
checkpoint=checkpoint, | |
ff_in=ff_in, | |
inner_dim=time_mix_inner_dim, | |
disable_self_attn=disable_self_attn, | |
disable_temporal_crossattention=disable_temporal_crossattention, | |
attn_precision=attn_precision, | |
dtype=dtype, device=device, operations=operations | |
) | |
for _ in range(self.depth) | |
] | |
) | |
assert len(self.time_stack) == len(self.transformer_blocks) | |
self.use_spatial_context = use_spatial_context | |
self.in_channels = in_channels | |
time_embed_dim = self.in_channels * 4 | |
self.time_pos_embed = nn.Sequential( | |
operations.Linear(self.in_channels, time_embed_dim, dtype=dtype, device=device), | |
nn.SiLU(), | |
operations.Linear(time_embed_dim, self.in_channels, dtype=dtype, device=device), | |
) | |
self.time_mixer = AlphaBlender( | |
alpha=merge_factor, merge_strategy=merge_strategy | |
) | |
def forward( | |
self, | |
x: torch.Tensor, | |
context: Optional[torch.Tensor] = None, | |
time_context: Optional[torch.Tensor] = None, | |
timesteps: Optional[int] = None, | |
image_only_indicator: Optional[torch.Tensor] = None, | |
transformer_options={} | |
) -> torch.Tensor: | |
_, _, h, w = x.shape | |
x_in = x | |
spatial_context = None | |
if exists(context): | |
spatial_context = context | |
if self.use_spatial_context: | |
assert ( | |
context.ndim == 3 | |
), f"n dims of spatial context should be 3 but are {context.ndim}" | |
if time_context is None: | |
time_context = context | |
time_context_first_timestep = time_context[::timesteps] | |
time_context = repeat( | |
time_context_first_timestep, "b ... -> (b n) ...", n=h * w | |
) | |
elif time_context is not None and not self.use_spatial_context: | |
time_context = repeat(time_context, "b ... -> (b n) ...", n=h * w) | |
if time_context.ndim == 2: | |
time_context = rearrange(time_context, "b c -> b 1 c") | |
x = self.norm(x) | |
if not self.use_linear: | |
x = self.proj_in(x) | |
x = rearrange(x, "b c h w -> b (h w) c") | |
if self.use_linear: | |
x = self.proj_in(x) | |
num_frames = torch.arange(timesteps, device=x.device) | |
num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps) | |
num_frames = rearrange(num_frames, "b t -> (b t)") | |
t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False, max_period=self.max_time_embed_period).to(x.dtype) | |
emb = self.time_pos_embed(t_emb) | |
emb = emb[:, None, :] | |
for it_, (block, mix_block) in enumerate( | |
zip(self.transformer_blocks, self.time_stack) | |
): | |
transformer_options["block_index"] = it_ | |
x = block( | |
x, | |
context=spatial_context, | |
transformer_options=transformer_options, | |
) | |
x_mix = x | |
x_mix = x_mix + emb | |
B, S, C = x_mix.shape | |
x_mix = rearrange(x_mix, "(b t) s c -> (b s) t c", t=timesteps) | |
x_mix = mix_block(x_mix, context=time_context) #TODO: transformer_options | |
x_mix = rearrange( | |
x_mix, "(b s) t c -> (b t) s c", s=S, b=B // timesteps, c=C, t=timesteps | |
) | |
x = self.time_mixer(x_spatial=x, x_temporal=x_mix, image_only_indicator=image_only_indicator) | |
if self.use_linear: | |
x = self.proj_out(x) | |
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w) | |
if not self.use_linear: | |
x = self.proj_out(x) | |
out = x + x_in | |
return out | |