Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from PIL import Image | |
import struct | |
import numpy as np | |
from comfy.cli_args import args, LatentPreviewMethod | |
from comfy.taesd.taesd import TAESD | |
import comfy.model_management | |
import folder_paths | |
import comfy.utils | |
import logging | |
MAX_PREVIEW_RESOLUTION = args.preview_size | |
def preview_to_image(latent_image): | |
latents_ubyte = (((latent_image + 1.0) / 2.0).clamp(0, 1) # change scale from -1..1 to 0..1 | |
.mul(0xFF) # to 0..255 | |
).to(device="cpu", dtype=torch.uint8, non_blocking=comfy.model_management.device_supports_non_blocking(latent_image.device)) | |
return Image.fromarray(latents_ubyte.numpy()) | |
class LatentPreviewer: | |
def decode_latent_to_preview(self, x0): | |
pass | |
def decode_latent_to_preview_image(self, preview_format, x0): | |
preview_image = self.decode_latent_to_preview(x0) | |
return ("JPEG", preview_image, MAX_PREVIEW_RESOLUTION) | |
class TAESDPreviewerImpl(LatentPreviewer): | |
def __init__(self, taesd): | |
self.taesd = taesd | |
def decode_latent_to_preview(self, x0): | |
x_sample = self.taesd.decode(x0[:1])[0].movedim(0, 2) | |
return preview_to_image(x_sample) | |
class Latent2RGBPreviewer(LatentPreviewer): | |
def __init__(self, latent_rgb_factors, latent_rgb_factors_bias=None): | |
self.latent_rgb_factors = torch.tensor(latent_rgb_factors, device="cpu").transpose(0, 1) | |
self.latent_rgb_factors_bias = None | |
if latent_rgb_factors_bias is not None: | |
self.latent_rgb_factors_bias = torch.tensor(latent_rgb_factors_bias, device="cpu") | |
def decode_latent_to_preview(self, x0): | |
self.latent_rgb_factors = self.latent_rgb_factors.to(dtype=x0.dtype, device=x0.device) | |
if self.latent_rgb_factors_bias is not None: | |
self.latent_rgb_factors_bias = self.latent_rgb_factors_bias.to(dtype=x0.dtype, device=x0.device) | |
if x0.ndim == 5: | |
x0 = x0[0, :, 0] | |
else: | |
x0 = x0[0] | |
latent_image = torch.nn.functional.linear(x0.movedim(0, -1), self.latent_rgb_factors, bias=self.latent_rgb_factors_bias) | |
# latent_image = x0[0].permute(1, 2, 0) @ self.latent_rgb_factors | |
return preview_to_image(latent_image) | |
def get_previewer(device, latent_format): | |
previewer = None | |
method = args.preview_method | |
if method != LatentPreviewMethod.NoPreviews: | |
# TODO previewer methods | |
taesd_decoder_path = None | |
if latent_format.taesd_decoder_name is not None: | |
taesd_decoder_path = next( | |
(fn for fn in folder_paths.get_filename_list("vae_approx") | |
if fn.startswith(latent_format.taesd_decoder_name)), | |
"" | |
) | |
taesd_decoder_path = folder_paths.get_full_path("vae_approx", taesd_decoder_path) | |
if method == LatentPreviewMethod.Auto: | |
method = LatentPreviewMethod.Latent2RGB | |
if method == LatentPreviewMethod.TAESD: | |
if taesd_decoder_path: | |
taesd = TAESD(None, taesd_decoder_path, latent_channels=latent_format.latent_channels).to(device) | |
previewer = TAESDPreviewerImpl(taesd) | |
else: | |
logging.warning("Warning: TAESD previews enabled, but could not find models/vae_approx/{}".format(latent_format.taesd_decoder_name)) | |
if previewer is None: | |
if latent_format.latent_rgb_factors is not None: | |
previewer = Latent2RGBPreviewer(latent_format.latent_rgb_factors, latent_format.latent_rgb_factors_bias) | |
return previewer | |
def prepare_callback(model, steps, x0_output_dict=None): | |
preview_format = "JPEG" | |
if preview_format not in ["JPEG", "PNG"]: | |
preview_format = "JPEG" | |
previewer = get_previewer(model.load_device, model.model.latent_format) | |
pbar = comfy.utils.ProgressBar(steps) | |
def callback(step, x0, x, total_steps): | |
if x0_output_dict is not None: | |
x0_output_dict["x0"] = x0 | |
preview_bytes = None | |
if previewer: | |
preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0) | |
pbar.update_absolute(step + 1, total_steps, preview_bytes) | |
return callback | |