Spaces:
Sleeping
Sleeping
import os | |
import comfy.sd | |
def first_file(path, filenames): | |
for f in filenames: | |
p = os.path.join(path, f) | |
if os.path.exists(p): | |
return p | |
return None | |
def load_diffusers(model_path, output_vae=True, output_clip=True, embedding_directory=None): | |
diffusion_model_names = ["diffusion_pytorch_model.fp16.safetensors", "diffusion_pytorch_model.safetensors", "diffusion_pytorch_model.fp16.bin", "diffusion_pytorch_model.bin"] | |
unet_path = first_file(os.path.join(model_path, "unet"), diffusion_model_names) | |
vae_path = first_file(os.path.join(model_path, "vae"), diffusion_model_names) | |
text_encoder_model_names = ["model.fp16.safetensors", "model.safetensors", "pytorch_model.fp16.bin", "pytorch_model.bin"] | |
text_encoder1_path = first_file(os.path.join(model_path, "text_encoder"), text_encoder_model_names) | |
text_encoder2_path = first_file(os.path.join(model_path, "text_encoder_2"), text_encoder_model_names) | |
text_encoder_paths = [text_encoder1_path] | |
if text_encoder2_path is not None: | |
text_encoder_paths.append(text_encoder2_path) | |
unet = comfy.sd.load_diffusion_model(unet_path) | |
clip = None | |
if output_clip: | |
clip = comfy.sd.load_clip(text_encoder_paths, embedding_directory=embedding_directory) | |
vae = None | |
if output_vae: | |
sd = comfy.utils.load_torch_file(vae_path) | |
vae = comfy.sd.VAE(sd=sd) | |
return (unet, clip, vae) | |