Spaces:
Sleeping
Sleeping
import torch | |
def convert_lora_bfl_control(sd): #BFL loras for Flux | |
sd_out = {} | |
for k in sd: | |
k_to = "diffusion_model.{}".format(k.replace(".lora_B.bias", ".diff_b").replace("_norm.scale", "_norm.scale.set_weight")) | |
sd_out[k_to] = sd[k] | |
sd_out["diffusion_model.img_in.reshape_weight"] = torch.tensor([sd["img_in.lora_B.weight"].shape[0], sd["img_in.lora_A.weight"].shape[1]]) | |
return sd_out | |
def convert_lora(sd): | |
if "img_in.lora_A.weight" in sd and "single_blocks.0.norm.key_norm.scale" in sd: | |
return convert_lora_bfl_control(sd) | |
return sd | |