Spaces:
Sleeping
Sleeping
import torch | |
import math | |
from comfy.ldm.modules.attention import optimized_attention_for_device | |
import comfy.ops | |
class T5LayerNorm(torch.nn.Module): | |
def __init__(self, hidden_size, eps=1e-6, dtype=None, device=None, operations=None): | |
super().__init__() | |
self.weight = torch.nn.Parameter(torch.empty(hidden_size, dtype=dtype, device=device)) | |
self.variance_epsilon = eps | |
def forward(self, x): | |
variance = x.pow(2).mean(-1, keepdim=True) | |
x = x * torch.rsqrt(variance + self.variance_epsilon) | |
return comfy.ops.cast_to_input(self.weight, x) * x | |
activations = { | |
"gelu_pytorch_tanh": lambda a: torch.nn.functional.gelu(a, approximate="tanh"), | |
"relu": torch.nn.functional.relu, | |
} | |
class T5DenseActDense(torch.nn.Module): | |
def __init__(self, model_dim, ff_dim, ff_activation, dtype, device, operations): | |
super().__init__() | |
self.wi = operations.Linear(model_dim, ff_dim, bias=False, dtype=dtype, device=device) | |
self.wo = operations.Linear(ff_dim, model_dim, bias=False, dtype=dtype, device=device) | |
# self.dropout = nn.Dropout(config.dropout_rate) | |
self.act = activations[ff_activation] | |
def forward(self, x): | |
x = self.act(self.wi(x)) | |
# x = self.dropout(x) | |
x = self.wo(x) | |
return x | |
class T5DenseGatedActDense(torch.nn.Module): | |
def __init__(self, model_dim, ff_dim, ff_activation, dtype, device, operations): | |
super().__init__() | |
self.wi_0 = operations.Linear(model_dim, ff_dim, bias=False, dtype=dtype, device=device) | |
self.wi_1 = operations.Linear(model_dim, ff_dim, bias=False, dtype=dtype, device=device) | |
self.wo = operations.Linear(ff_dim, model_dim, bias=False, dtype=dtype, device=device) | |
# self.dropout = nn.Dropout(config.dropout_rate) | |
self.act = activations[ff_activation] | |
def forward(self, x): | |
hidden_gelu = self.act(self.wi_0(x)) | |
hidden_linear = self.wi_1(x) | |
x = hidden_gelu * hidden_linear | |
# x = self.dropout(x) | |
x = self.wo(x) | |
return x | |
class T5LayerFF(torch.nn.Module): | |
def __init__(self, model_dim, ff_dim, ff_activation, gated_act, dtype, device, operations): | |
super().__init__() | |
if gated_act: | |
self.DenseReluDense = T5DenseGatedActDense(model_dim, ff_dim, ff_activation, dtype, device, operations) | |
else: | |
self.DenseReluDense = T5DenseActDense(model_dim, ff_dim, ff_activation, dtype, device, operations) | |
self.layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device, operations=operations) | |
# self.dropout = nn.Dropout(config.dropout_rate) | |
def forward(self, x): | |
forwarded_states = self.layer_norm(x) | |
forwarded_states = self.DenseReluDense(forwarded_states) | |
# x = x + self.dropout(forwarded_states) | |
x += forwarded_states | |
return x | |
class T5Attention(torch.nn.Module): | |
def __init__(self, model_dim, inner_dim, num_heads, relative_attention_bias, dtype, device, operations): | |
super().__init__() | |
# Mesh TensorFlow initialization to avoid scaling before softmax | |
self.q = operations.Linear(model_dim, inner_dim, bias=False, dtype=dtype, device=device) | |
self.k = operations.Linear(model_dim, inner_dim, bias=False, dtype=dtype, device=device) | |
self.v = operations.Linear(model_dim, inner_dim, bias=False, dtype=dtype, device=device) | |
self.o = operations.Linear(inner_dim, model_dim, bias=False, dtype=dtype, device=device) | |
self.num_heads = num_heads | |
self.relative_attention_bias = None | |
if relative_attention_bias: | |
self.relative_attention_num_buckets = 32 | |
self.relative_attention_max_distance = 128 | |
self.relative_attention_bias = operations.Embedding(self.relative_attention_num_buckets, self.num_heads, device=device, dtype=dtype) | |
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): | |
""" | |
Adapted from Mesh Tensorflow: | |
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 | |
Translate relative position to a bucket number for relative attention. The relative position is defined as | |
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to | |
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for | |
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative | |
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. | |
This should allow for more graceful generalization to longer sequences than the model has been trained on | |
Args: | |
relative_position: an int32 Tensor | |
bidirectional: a boolean - whether the attention is bidirectional | |
num_buckets: an integer | |
max_distance: an integer | |
Returns: | |
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) | |
""" | |
relative_buckets = 0 | |
if bidirectional: | |
num_buckets //= 2 | |
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets | |
relative_position = torch.abs(relative_position) | |
else: | |
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) | |
# now relative_position is in the range [0, inf) | |
# half of the buckets are for exact increments in positions | |
max_exact = num_buckets // 2 | |
is_small = relative_position < max_exact | |
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance | |
relative_position_if_large = max_exact + ( | |
torch.log(relative_position.float() / max_exact) | |
/ math.log(max_distance / max_exact) | |
* (num_buckets - max_exact) | |
).to(torch.long) | |
relative_position_if_large = torch.min( | |
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) | |
) | |
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) | |
return relative_buckets | |
def compute_bias(self, query_length, key_length, device, dtype): | |
"""Compute binned relative position bias""" | |
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] | |
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] | |
relative_position = memory_position - context_position # shape (query_length, key_length) | |
relative_position_bucket = self._relative_position_bucket( | |
relative_position, # shape (query_length, key_length) | |
bidirectional=True, | |
num_buckets=self.relative_attention_num_buckets, | |
max_distance=self.relative_attention_max_distance, | |
) | |
values = self.relative_attention_bias(relative_position_bucket, out_dtype=dtype) # shape (query_length, key_length, num_heads) | |
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length) | |
return values | |
def forward(self, x, mask=None, past_bias=None, optimized_attention=None): | |
q = self.q(x) | |
k = self.k(x) | |
v = self.v(x) | |
if self.relative_attention_bias is not None: | |
past_bias = self.compute_bias(x.shape[1], x.shape[1], x.device, x.dtype) | |
if past_bias is not None: | |
if mask is not None: | |
mask = mask + past_bias | |
else: | |
mask = past_bias | |
out = optimized_attention(q, k * ((k.shape[-1] / self.num_heads) ** 0.5), v, self.num_heads, mask) | |
return self.o(out), past_bias | |
class T5LayerSelfAttention(torch.nn.Module): | |
def __init__(self, model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias, dtype, device, operations): | |
super().__init__() | |
self.SelfAttention = T5Attention(model_dim, inner_dim, num_heads, relative_attention_bias, dtype, device, operations) | |
self.layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device, operations=operations) | |
# self.dropout = nn.Dropout(config.dropout_rate) | |
def forward(self, x, mask=None, past_bias=None, optimized_attention=None): | |
normed_hidden_states = self.layer_norm(x) | |
output, past_bias = self.SelfAttention(self.layer_norm(x), mask=mask, past_bias=past_bias, optimized_attention=optimized_attention) | |
# x = x + self.dropout(attention_output) | |
x += output | |
return x, past_bias | |
class T5Block(torch.nn.Module): | |
def __init__(self, model_dim, inner_dim, ff_dim, ff_activation, gated_act, num_heads, relative_attention_bias, dtype, device, operations): | |
super().__init__() | |
self.layer = torch.nn.ModuleList() | |
self.layer.append(T5LayerSelfAttention(model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias, dtype, device, operations)) | |
self.layer.append(T5LayerFF(model_dim, ff_dim, ff_activation, gated_act, dtype, device, operations)) | |
def forward(self, x, mask=None, past_bias=None, optimized_attention=None): | |
x, past_bias = self.layer[0](x, mask, past_bias, optimized_attention) | |
x = self.layer[-1](x) | |
return x, past_bias | |
class T5Stack(torch.nn.Module): | |
def __init__(self, num_layers, model_dim, inner_dim, ff_dim, ff_activation, gated_act, num_heads, relative_attention, dtype, device, operations): | |
super().__init__() | |
self.block = torch.nn.ModuleList( | |
[T5Block(model_dim, inner_dim, ff_dim, ff_activation, gated_act, num_heads, relative_attention_bias=((not relative_attention) or (i == 0)), dtype=dtype, device=device, operations=operations) for i in range(num_layers)] | |
) | |
self.final_layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device, operations=operations) | |
# self.dropout = nn.Dropout(config.dropout_rate) | |
def forward(self, x, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None): | |
mask = None | |
if attention_mask is not None: | |
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]) | |
mask = mask.masked_fill(mask.to(torch.bool), float("-inf")) | |
intermediate = None | |
optimized_attention = optimized_attention_for_device(x.device, mask=attention_mask is not None, small_input=True) | |
past_bias = None | |
for i, l in enumerate(self.block): | |
x, past_bias = l(x, mask, past_bias, optimized_attention) | |
if i == intermediate_output: | |
intermediate = x.clone() | |
x = self.final_layer_norm(x) | |
if intermediate is not None and final_layer_norm_intermediate: | |
intermediate = self.final_layer_norm(intermediate) | |
return x, intermediate | |
class T5(torch.nn.Module): | |
def __init__(self, config_dict, dtype, device, operations): | |
super().__init__() | |
self.num_layers = config_dict["num_layers"] | |
model_dim = config_dict["d_model"] | |
self.encoder = T5Stack(self.num_layers, model_dim, model_dim, config_dict["d_ff"], config_dict["dense_act_fn"], config_dict["is_gated_act"], config_dict["num_heads"], config_dict["model_type"] != "umt5", dtype, device, operations) | |
self.dtype = dtype | |
self.shared = operations.Embedding(config_dict["vocab_size"], model_dim, device=device, dtype=dtype) | |
def get_input_embeddings(self): | |
return self.shared | |
def set_input_embeddings(self, embeddings): | |
self.shared = embeddings | |
def forward(self, input_ids, *args, **kwargs): | |
x = self.shared(input_ids, out_dtype=kwargs.get("dtype", torch.float32)) | |
if self.dtype not in [torch.float32, torch.float16, torch.bfloat16]: | |
x = torch.nan_to_num(x) #Fix for fp8 T5 base | |
return self.encoder(x, *args, **kwargs) | |